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Mathematical simulations of the p53–Mdm2 feedback loop suggest that both 

proteins will exhibit impulsive expression characteristics in response to high cellular 

stress levels. However, little quantitative experimental evaluation has been 

performed, particularly of the phosphorylated forms.  To evaluate the mathematical 

models experimentally, we used lysate microarrays from an isogenic pair of gamma 

ray–irradiated cell lysates from HCT116 (p53
+/+

 and p53
-/-

). Both p53 and Mdm2 

proteins showed expected pulses in the wild type, whereas no pulses were seen in the 

knockout. Based on experimental observations, we determined model parameters 

and generated an in silico 'knockout', reflecting the experimental data, including 

phosphorylated proteins. 
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Biological responses in cells are coordinated by signaling networks based on protein 

dynamics. A major goal in the elucidation of biological networks is to develop 

mathematical models of the dynamics of protein signaling pathways. However, 

mathematical modeling of such pathways is limited by the lack of an appropriate, high-

throughput means to experimentally validate protein dynamics under different 

experimental conditions. For instance, the instantaneous state of a biological network will 

vary according to both the type of stimulus and the time of measurement. Therefore, 

acquiring quantitative information from different conditions or time points is extremely 

important for model development and validation. To achieve the monitoring of multi-

dimensional (different conditions, times, and proteins) pathway dynamics, a study format 

allowing the simultaneous measurement of many proteins across many samples is ideal. 

‘Reverse-phase’ protein lysate microarrays (RPAs) have been developed for quantitative 

proteomic monitoring in various biological contexts (1, 2).  In principle, the RPA 

technique involves spotting whole-cell-fraction lysates in a microarray format to detect 

particular proteins with specific primary antibodies, making it especially useful when 

testing many samples in a single experiment.  

Using RPA technology, we captured the protein dynamics of the p53–Mdm2 

feedback loop, one of the best-studied biological networks.  An important tumor 

suppressor protein, p53, is mutated frequently in human cancers, and is vital to cell 

mechanisms such as DNA repair, apoptosis, and cell cycle regulation.  As a key 

transcriptional regulator, p53 binds to specific sequences in DNA and activates many 

downstream genes, including Mdm2. In turn, the Mdm2 protein inhibits the 

transcriptional activity of p53 and enhances its degradation.  This negative feedback loop 



Ramalingam, S. -4- 

keeps the p53 protein level low yet stable under normal conditions and helps to switch off 

p53 at the end of a stress response. Accumulating knowledge of the p53–Mdm2 feedback 

mechanism has led investigators to explore mathematical methods to better understand 

this system (3-6). However, validating the plausibility of the mathematical models has 

not been a trivial task because of the many samples that are required from many time-

points and the difficulty in quantitative protein monitoring in a high-throughput fashion. 

In the present study, we produced a high-density RPA from a p53-knockout model cell 

line, HCT116, to validate mathematical models of the p53–Mdm2 feedback loop by 

quantitative protein monitoring.  

 

Materials and Methods 

 Cell culture. An isogenic pair of HCT116 colon cancer cell lines was kindly 

provided by Dr. Bert Vogelstein (Johns Hopkins University, Baltimore, MD) (7). Cells 

were grown at 37 °C in the presence of 5% CO2 in McCoy's 5A medium containing 10% 

Fetal Bovine Serum. 

 

 Collection of cell lysate. The isogenic pair of HCT116 with three biological 

replicates were grown and collected independently. Following exposure to 0.3, 3, and 30 

Gy of gamma irradiation using the 
137

Cs Mark 1 irradiator (Shepard & Associates, San 

Francisco, CA),  protein lysates of p53
+/+

 and p53
-/-

 at 10 time points over an 8-hour 

period were collected with a modified cell lysis protocol (1). 
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 ‘Reverse-phase’ protein lysate microarrays. The Aushon 2470 microarrayer 

(Aushon BioSystems, Burlington, MA) was used to produce the RPAs for this study.  

The array surface was a nitrocellulose-coated glass slide for which manufacturing 

conditions were optimized for our RPA (Grace BioLabs, Bend, OR). A set of nineteen 

384-well microplates, each containing 10-time, 2-fold serial dilutions of each sample, 

was prepared. The robustness of the array design was maximized by including two 

technical replicates for each biological replicate, as well as ensuring that no two 

biological replicates were spotted by the same pin.   

 

 Image processing. To acquire enough bit depth and pixels per feature, an optical 

flatbed scanner (Epson 4870, Epson America, Long Beach, CA) with the resolution set to 

16-bit, 2400 dpi was used. To prevent the image intensity from being skewed, a Wedge 

Density Strip (Danes-Picta, Praha, Czech Republic) was used for readout range 

calibration (8). The resulting images were processed by P-SCAN and Proteinscan 

software packages written in MATLAB. 

 

 Immunocytochemistry. A half-million cells were plated onto a cover glass and 

placed in a 3.5-cm Petri dish to grow on the surface of both the cover glass and the Petri 

dish. After 16–24 hours of incubation, the irradiated cells were processed for 

immunostaining with either mouse anti-p53 primary antibody (LabVision, Fremont, CA) 

or rabbit anti-p53-Ser15 antibody (Cell Signaling Technology, Danvers, MA), followed 

by fluorophore conjugated either with anti-mouse or with -rabbit IgG secondary 

antibodies. 
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 Mathematical models. The premise of our model comes from the systems 

developed by Lev Bar-Or et al. and Ma et al. (5, 6). MATLAB (MathWorks, Natick, 

MA) language was used to program all simulations. The feedback loop circuits were 

divided into Oscillator and Stress modules. All equations and parameter settings are 

available in Supplemental Information. 

 

Results 

 Quantitative monitoring of p53 and Mdm2 proteins. Since the wild-type cells 

(p53
+/+

) have functional p53 activity, comparison with the knockout cells (p53
-/-

) 

provides useful p53-dependent information about cellular response to DNA damage. To 

examine the p53-mediated stress response, protein lysates from each cell line were 

collected at 10 time points during a period of eight hours following exposure to ionizing 

radiation, at doses of 0.3, 3, and 30 Gy, and subjected to RPA production (Fig. 1A).  

 In p53
+/+

 cells at a dose of 30 Gy, both proteins showed discrete peaks at 

approximately 4 and 7 hours (Fig. 1B, C). Oscillations of p53 and Mdm2 have been 

reported in computational simulations, with a delay caused by the time lag necessary for 

activation of Mdm2 by p53 (4-6); however, the discrete timing of our sample collections 

may have made this delay difficult to see.  Evidence of a delay is better seen at the 2-hour 

time point in p53
+/+

 cells exposed to 30 Gy, when p53 has begun to rise; however, Mdm2 

does not increase until later.  Mdm2 showed very little increase in p53
-/-

 cells at all doses, 

suggesting involvement of p53 for Mdm2 induction after irradiation.  Interestingly, p53
-/-

 

cells showed a gradual decrease in Mdm2 upon exposure to radiation, presumably due to 
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an increased rate of degradation.  Thus, although p53
-/-

 cells do not possess the p53 gene, 

p53-independent activity upstream of Mdm2 may still regulate Mdm2 stability (9, 10). 

In addition to stabilizing p53 by preventing Mdm2 from binding, phosphorylation at 

Ser15 is known to aid p53’s ability to transcriptionally activate other genes (Fig. 1D,E) 

(11).  Within the first hour following a high dose of radiation, the level of p53-Ser15 in 

p53
+/+

 cells rises more rapidly than total p53, implying that phosphorylation of the 

existing cellular pool of p53 is critical for its accumulation after stress.  Total Mdm2 falls 

(Fig. 1C) at all doses within the first hour after radiation, probably because of stress-

induced degradation of Mdm2; however, Mdm2-Ser166 rises or stays constant, indicating 

that this form of the molecule might be more stable (Fig. 1E) (12).  Phosphorylation of 

Mdm2 at Ser166 by ionizing radiation has been shown by inducing PKB/Akt activation, 

which presumably stabilizes Mdm2 and helps it enter the nucleus, where it inactivates 

p53 (12).  Our observations of phosphorylated proteins with total p53 and Mdm2 levels 

indicate a possible correlation between phosphorylation at certain sites, conferring 

stability and activity of these species in this time period. 

 

 Mathematical models of the p53–Mdm2 feedback loop. The initial model 

generated by Lev Bar-Or et al. (5) showed damped oscillations of p53 and Mdm2 after 

stress through a mathematical representation of an unknown intermediary process leading 

to a delay in the p53-dependent induction of Mdm2. Recently, a model was developed by 

Ma et al. (6) depicting oscillations by showing the role of the DNA damage sensor, ATM, 

in both phosphorylating p53 and increasing the degradation of Mdm2 (13, 14). Based on 

these two studies, we generated an interaction map consisting of four proteins—p53, 
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Mdm2, p53-Ser15, and Mdm2-Ser166 (Fig. 2A).  It should also be noted that other 

models have been shown to generate similar oscillations (15).  For example, the model by 

Ciliberto et al. (4) showed oscillations of p53 as a result of both negative and positive 

feedback loops.  Chikaramane et al. (3) proposed a model taking into account the role of 

additional proteins, including Arf, Siah, and B-Catenin in p53 regulation. 

Our experimental results guided the assignment of parameter values for the set of 

differential equations (Supplemental Information), and notably of phosphorylated protein 

species. We fixed the time scale and the frequency of pulses of each protein to fit 

accordingly. Kinetic parameters were adjusted in the simulations of p53
+/+

 cells until we 

observed oscillations of p53 and Mdm2 at approximately 4 and 7 hours to coincide with 

our experimental results (Fig. 3A). After making the appropriate parameter settings for 

p53 and Mdm2, peaks were seen in simulations of both p53 and p53-Ser15 at 

approximately 4 and 7 hours.  As in our experiments, the level of p53-Ser15 rose more 

rapidly than that of total p53 within the first hour after stress was applied. Since the 

model incorporates the effect of upstream kinase activity on Mdm2, which induces rapid 

and selective degradation of the molecule, the simulations showed an initial dip in total 

Mdm2 level, consistent with simulations by others (4, 6) and with our RPA results.  In 

contrast, we saw Mdm2-Ser166 stay at the initial level within the first 3 hours before 

exhibiting oscillations similar to our experimental observations, suggesting that 

phosphorylation at this site could prevent rapid degradation, thereby stabilizing the 

molecule (12). 

Based on parameters that agreed with the RPA results in p53
+/+

 cells, we created 

an in silico “knockout” of the p53 gene by setting the p53 production rate of the 
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mathematical models to zero (Fig. 3B). As in our experiments, total Mdm2 fell after 

exposure to stress, while Mdm2-Ser166 increased briefly up to 1 hour and decreased 

gradually afterwards.  Interestingly, Mdm2 and Mdm2-Ser166 are similar in both p53
-/-

 

and p53
+/+

 cells within the first 3 hours—total Mdm2 drops, and Mdm2-Ser166 is 

sustained. However, due to the lack of p53 production, total Mdm2 does not increase 

after 3 hours in p53
-/-

 cells.  This finding suggests that, after 3 hours, upstream kinase 

activity continues to degrade un-phosphorylated Mdm2, causing the Mdm2-Ser166 

equilibrium to shift towards de-phosphorylation, which results in a concomitant decrease 

in Mdm2-Ser166 levels (Fig. 2B). 

 

 Protein expression synchronization in cell population. From our RPA results at 

lower radiation doses, we found that p53
+/+

 cells appeared to show no noticeable 

oscillation.  However, previous studies have shown that individual cells respond with 

discrete pulses in a nonsynchronized manner, even at low radiation doses (16).  To 

explain this discrepancy, we stained populations of cells for p53 and p53-Ser15 

expression after radiation at doses of 0.3, 3, and 30.0 Gy.  We found more cells expressed 

higher levels of p53 in response to higher doses or radiation (Fig. 4).  At lower doses, 

fewer cells may need to respond to DNA damage, presumably because the dose does not 

reach a threshold level necessary for a response in a majority of cells (17). Therefore, 

pulses at lower doses may not be clearly visible at the full population level due to an 

averaging effect.  We postulate that, at higher doses, most cells respond at closer–to-

maximum capacity, exhibiting pulses that are closely synchronized and therefore 

detectable at the full population level. These observations suggest that protein expression 
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kinetics at lower stress levels may not appropriately reflect the network at the single-cell 

level; however, at high stress levels, where most cells are showing response above the 

threshold level, population-driven quantitative data can still provide a reasonable 

approximation of the average stress-induced response of individual cells (17). 

 

Discussion 

Although successful mathematical modeling of signal transduction has been reported, 

details of the timing of events are largely missing because compensating quantitative 

experimental systems are lacking. The aims of our present study are: (i) to provide highly 

quantitative measurements at the protein level as a function of time; (ii) to simulate a 

gene knockout effect by mathematical modeling; and (iii) to compare the in silico 

knockout model with an isogenic in vitro model. Although we are not explicitly 

incorporating all of the existing identified molecules in the pathway as part of the 

equations, using a combination of the RPA system and the knockout isogenic cell lines, 

we predicted the knockout effect in vitro with an in silico approach at the protein level, 

suggesting that the robust response of the feedback loop represented by p53 and Mdm2 is 

consistent, although it may be a consequence of complex processes. 

 Molecular network studies often focus on signaling events by using averaged or 

pooled samples from a heterogeneous population. These data can be easily misinterpreted 

because individual cells behave differently in response to external stimuli. For instance, 

recent extensive protein imaging analysis revealed considerable variability of the p53–

Mdm2 feedback loop at the single-cell level when cells were exposed to low and medium 

doses of γ irradiation (15). However, tracking multiple species of molecules with multiple 
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parameters at the single-cell level is not always feasible. Although a high-stress dose may 

be necessary to synchronize responses of the cells, using RPAs can be an adequate 

complementary technique to imaging analysis. Accumulating such quantitative proteomic 

reference data represents a substantial contribution to understanding signaling networks 

at the systems level. 
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Figure Legends 

 

Figure 1. |  Protein expression dynamics measured by RPA. (A) The RPA slides stained 

with p53 and Mdm2 antibody are shown.  The slides depict 3,800 features showing 10-

time 2-fold serial dilutions and 2-time technical replicates of 190 different samples. 
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The 190 samples consist of protein lysates taken from 10 control samples, and 3 

biological replicates of the 10 time points studied after the exposure of 2 cell lines to 3 

radiation doses.  The serial dilutions were used to produce dilution curves to facilitate 

quantitation.  (B) Protein expression levels of total p53; (C) total Mdm2; (D) p53–Ser15; 

and (E) Mdm2–Ser166, generated by a DI25 algorithm, are plotted as a function of time.  

Each protein has a set of data from three doses and a pair of isogenic cell lines (p53
+/+

 

and p53
-/-

). Each data point represents the average of 3 biological and 2 technical 

replicates.  Horizontal axis indicates time (hours), and vertical axis indicates protein 

expression levels in AU (arbitrary units), calculated by dividing each data point by the 

value representing the maximum staining intensity found on the array.  Error bars 

represent the standard error of the mean. 

 

Figure 2. | Schematic diagram of the p53–Mdm2 feedback loop.  Red and blue ovals 

represent p53 and Mdm2 molecules, respectively. Gray ovals represent those not 

incorporated in the mathematical models explicitly, but likely to play important roles in 

the feedback loop (18-20). (A) Under normal conditions, p53, Mdm2, p53–Ser15, and 

Mdm2–Ser166 are maintained at a steady-state level.  In response to cell stress, 

oscillations in these protein levels are triggered as a result of activation signals and 

upstream kinase activity. HAUSP expression is not influenced by DNA damage (20). 

Solid arrows indicate signal transduction and conversion of the molecules. Mdm2–

Ser166 inhibits p53 activity. Dashed arrows illustrate de-phosphorylation. (B) In 

knockout cells, where there is no p53, continuous degradation of un-phosphorylated 

Mdm2 may drive the equilibrium of Mdm2–Ser166 toward de-phosphorylation. 
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Figure 3. | Mathematical simulations of the p53–Mdm2 feedback loop. Each column 

illustrates the protein expression levels of four protein species. From the left, (A) RPA 

data of p53
+/+

 cells and the simulations of p53
+/+

 cells; (B) RPA data of p53
-/-

 cells and 

the simulations (in silico knockout) of p53
-/-

 cells. Horizontal axes indicate time (hours), 

and vertical axes indicate protein expression levels by linear scaled DI25 values (RPA 

results) and fold changes in concentration (simulations).  The insets in (B) display the 

identical kinetics at the same scale as the wild type.  Error bars represent the standard 

error of the mean. 

 

Figure 4. | Expression of p53 and p53–Ser15 in response to different doses of ionizing 

radiation by immunochemistry in HCT116 p53
+/+

 cells 4 hours after radiation. HCT116 

p53
+/+

 cells carry wild-type p53 alleles, and thus show visible basal levels of p53 staining 

in control (non-irradiated) cells. At 0.3 Gy, cells start responding by exhibiting p53, 

although most cells exhibit the same level of expression as the control. At 3.0 Gy, more 

cells show a distinct response than at 0.3Gy, but there is considerable heterogeniety. At 

30 Gy, most cells show a distinct response.  High-level expression is seen at 30 Gy, 

including some very high responders that are presumably pulsating. Expression of p53–

Ser15 is also distinct at the dose of 30 Gy, although a small fraction of cells shows a 

visible response at lower doses. DAPI staining highlights the corresponding nuclear DNA. 

Error bars represent the standard error of the mean. 
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