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Abstract

The paper considers several examples of non-Debye dielectric response in complex heterogeneous media. The

percolation phenomenon and Cole–Cole relaxation in disordered matter are discussed in detail. The proposed models

are illustrated by different sample systems: ionic microemulsions, porous glasses, porous silicon, polymer–water mix-

tures, and polymer–microcomposite materials. The models enable us to establish the relationship between the pa-

rameters of dielectric relaxation broadening, structural properties of the media and transport features of charge carriers

in the considered systems. In addition, the origins of ‘‘strange kinetic’’ phenomena were discussed based on statistical

physics and fractional time evolution ideas.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Recent years have witnessed extensive research
of soft condensed matter physics to investigate the

structure, dynamics, and macroscopic behavior of

complex systems (CS). CS are a very broad and

general class of materials that are typically non-

crystalline. Polymers, biopolymers, colloid systems

(emulsions and microemulsions), biological cells,

porous materials, and liquid crystals can be con-

sidered as CS. All these systems exhibit a common
feature: the new ‘‘mesoscopic’’ length scale, inter-

mediate between molecular and macroscopic. The

dynamic processes occurring in CS include differ-

ent length and time scales. Both fast and ultra-slow

molecular rearrangements take place within the
microscopic, mesoscopic and macroscopic orga-

nization of the systems.

A common theme in CS is that while the ma-

terials are disordered at the molecular scale and

homogeneous at the macroscopic scale, they usu-

ally possess a certain amount of order at an in-

termediate, so-called mesoscopic, scale due to a

delicate balance of interaction and thermal effects.
Simple exponential relaxation law and the classical

model of Brownian diffusion cannot describe the

relaxation phenomena and kinetics in such mate-

rials. This kind of non-exponential relaxation be-

havior and anomalous diffusion phenomena is

today called ‘‘strange kinetics’’ [1].

Generally, the complete characterization of

these relaxation behaviors requires the use of a
variety of techniques in order to span the relevant
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ranges in frequency. In this regard, the Dielectric

Spectroscopy (DS) has its own advantages. The

modern DS technique may overlap extremely wide

frequency (10�6 to 1011 Hz) and temperature ()170
to +500�C) ranges [2–4]. DS is especially sensitive

to intermolecular interactions and is able to
monitor cooperative processes at the molecular

level. Therefore, this method is more appropriate

than any other to monitor such different scales of

molecular motion. It provides a link between the

investigation – via molecular spectroscopy – of the

properties of the individual constituents of

the complex material and the characterization of

its bulk properties. The recent successful develop-
ments of the Time Domain Dielectric Spectro-

scopy (TDDS) method and Broadband Dielectric

Spectroscopy (BDS) have radically changed the

attitude towards DS; it is now recognized as an

effective investigative tool for research on solids

and liquids at macroscopic, microscopic and

mesoscopic levels.

It is known that when an external field is ap-
plied to the dielectric, polarization of the material

reaches its equilibrium value, not instantly, but

over a period of time. By analogy, when the field is

removed suddenly, the polarization decay caused

by thermal motion follows the same law as the

relaxation or decay function of dielectric polar-

ization /ðtÞ:

/ðtÞ ¼ PðtÞ
Pð0Þ ; ð1:1Þ

where P is a polarization vector of a sample unit.

The relationship for the dielectric displacement

vector DðtÞ in the case of time dependent fields

may be written as follows [5,6]:

DðtÞ ¼ e1EðtÞ þ
Z t

�1

dUðt0Þ
dt0

Eðt � t0Þdt0: ð1:2Þ

In (1.2) DðtÞ ¼ e0EðtÞ þ PðtÞ, where e0 is the

dielectric permittivity of free space, e1 is the high-

frequency limit of the complex dielectric permit-

tivity e�ðxÞ, and UðtÞ is the dielectric response

function UðtÞ ¼ ðes � e1Þ 1� /ðtÞ½ 
, where es is the
low-frequency limit of the complex dielectric per-

mittivity. The complex dielectric permittivity e�ðxÞ
is connected with the relaxation function by a very

simple relationship [5,6]

e�ðxÞ � e1
es � e1

¼ L̂L
�
� d

dt
/ðtÞ

�
; ð1:3Þ

where L̂L is the operator of the Laplace transform,

which is defined for the arbitrary time-dependent

function f ðtÞ as

L̂L f ðtÞ½ 
 ¼
Z 1

0

e�ptf ðtÞdt; ð1:4Þ

where p ¼ ix and iis the imaginary unity.

If

/ðtÞ ¼ expð�t=smÞ; ð1:5Þ

where sm represents the characteristic dielectric

relaxation time, then the relation first obtained by

Debye is true for the frequency domain [5–7]

e�ðxÞ � e1
es � e1

¼ 1

1þ ixsm
: ð1:6Þ

For most of the systems being studied, the re-

lationship above does not sufficiently describe the
experimental results. This causes the necessity for

empirical relationships, which formally take into

account the distribution of the relaxation times. In

the most general way such non-Debye dielectric

behavior can be described in terms of a continuous

distribution of relaxation times, gðsÞ [6]. This im-

plies that the complex dielectric permittivity can be

presented as follows:

e�ðxÞ � e1
es � e1

¼
Z 1

0

gðsÞ
1þ ixs

ds; ð1:7Þ

where distribution function gðsÞ satisfies the nor-

malization conditionZ 1

0

gðsÞds ¼ 1: ð1:8Þ

The corresponding expression for the decay func-
tion is

/ðtÞ ¼
Z 1

0

gðsÞe�t=s ds: ð1:9Þ

It must be clearly understood that by virtue of the

univalent relationship (1.3) between frequency and

time representation the gðsÞ calculation does not
by itself provide anything more than another

way of describing the dynamic behavior of the

dielectric in time domain [8]. Moreover, such a
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calculation is a mathematically ill-posed problem

[9,10], which leads to additional mathematical

difficulties. On some occasions, a frequency data

analysis can provide a clearer physical interpreta-

tion [10,11]. In most cases of non-Debye dielectric
spectrums the data have been described by the so-

called Havriliak–Negami (HN) relationship

[6,7,12]

e�ðxÞ ¼ e1 þ
es � e1

1þ ðixsmÞa½ 
b
; 0 < a; b < 1:

ð1:10Þ
Here a and b are empirical exponents. The specific

case a ¼ 1; b ¼ 1 gives the Debye relaxation law,

b ¼ 1; a 6¼ 1 corresponds to the so-called Cole–

Cole (CC) equation [13], whereas the case
a ¼ 1; b 6¼ 1, corresponds to the Cole–Davidson

(CD) formula [14].

Sometimes in the case of superposition of re-

laxation processes with dc and ac conductivities

the high and low frequency asymptotic forms

are usually assigned to Jonscher power-law wings

ðixsiÞðni�1Þ (ni is a Jonscher stretch parameter, and

si is the correspondent characteristic relaxation
time) [15,16]. Notice that the real part e0ðxÞ of the
complex dielectric permittivity is proportional to

the imaginary part r00ðxÞ of the complex ac-con-

ductivity r�ðxÞ, e0ðxÞ / �r00ðxÞ=x, and the di-

electric losses e00ðxÞ is proportional to the real part

r0ðxÞ of the ac conductivity, e00ðxÞ / r0ðxÞ=x. The

latter arises from the Jonscher term and has the

form, r0ðxÞ / xuj , which has been termed ‘‘uni-
versal’’ due to its appearance in many types of

disordered systems [17,18]. Progress has been

made recently in understanding the physical sig-

nificance of the empirical parameters a; b and ex-

ponents of Jonscher wings [19–22].

An alternative approach to DS study is to ex-

amine the dynamic molecular properties of a sub-

stance directly in time domain. Relation (1.3) shows
that the equivalent information on the dielectric

relaxation properties of a sample being tested can be

obtained in both frequency and time domains.

In the linear response approximation, the fluc-

tuations of polarization caused by thermal motion

are the same as for the macroscopic reconstruction

induced by the electric field [23,24]. Thus, one can

equate the relaxation function /ðtÞ and the mac-

roscopic dipole correlation function (DCF) WðtÞ as
follows:

/ðtÞ ffi WðtÞ ¼ hMð0ÞMðtÞihMð0ÞMð0Þi ; ð1:11Þ

where MðtÞ is the macroscopic fluctuating dipole

moment of the sample volume unit, which is equal

to the vector sum of all the molecular dipoles. The

rate and laws governing the DCF WðtÞ are directly
related to the structural and kinetic properties of

the sample and characterize the macroscopic

properties of the system under study. Thus, the

experimental function UðtÞ and hence /ðtÞ or WðtÞ
can be used to obtain information on the dynamic

properties of the dielectric under investigation.

The dielectric relaxation of many complex systems

deviates from the classical exponential Debye

pattern (1.5) and can be described by the Kohl-

rausch–Williams–Watts (KWW) law or the

‘‘stretched exponential law’’ [25,26]

/ðtÞ ¼ exp

�
� t

sm

� �m�
ð1:12Þ

with a characteristic relaxation time sm and em-
pirical exponent 0 < m6 1. The KWW decay

function can be considered as a generalization of

Eq. (1.5) that becomes Debye law when m ¼ 1.

Another common experimental observation of

DCF is the asymptotic power law [15,16],

/ðtÞ ¼ A
t

s1

� ��l

; tP s1; ð1:13Þ

with amplitude A, exponent l > 0 and a charac-

teristic time s1 which is associated with the effective
relaxation time of the microscopic structural unit.

This relaxation power law is sometimes referred to

the literature to describing anomalous transport

when the mean square displacement does not obey

the linear dependency hR2i � t. Instead, it is pro-

portional to some power of time hR2i � tc

ð0 < c < 2Þ [27–29]. In this case, the parameter s1
is an effective relaxation time, which corresponds
to the charge carrier motion of an average dis-

placement equal to the size of the minimal struc-

tural unit. A number of approaches exist to

describe such kinetic processes: Fokker–Planck

equation [30], propagator representation [31],
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different models of dc and ac conductivities [17,22],

etc.

In frequency domain, Jonscher power-law

wings evaluated by ac-conductivity measurements.

In particular, it treat to anomalous diffusion as a
random walk in fractal geometry or as a thermally

activated hopping transport mechanism [32]. An

example of a phenomenological decay function

that has different short- and long-time asymptotic

forms (with the different characteristic times) can

be presented as follows [33,34]:

/ðtÞ ¼ A
t
s1

� ��l

exp

�
� t

sm

� �m�
: ð1:14Þ

This function is the product of KWW and power-

law dependencies. The relaxation law (1.14) in
time domain and the HN law (1.10) in frequency

domain are rather generalized representations that

lead to the known dielectric relaxation laws. The

fact that these functions have the power-law as-

ymptotic inspires numerous attempts to establish a

relationship between their various parameters

[11,35]. In this regard, the exact relationship be-

tween the parameters of (1.14) and the HN law
should be a consequence of the Laplace transform

according to Eq. (1.3) [6,8]. However, there is

currently no concrete proof that this is indeed so.

Thus, the relationship between the parameters of

decay function (1.14) and the HN law seems to be

valid only asymptotically.

In this contribution, we will to consider the

experimental evidence of non-Debye dielectric re-
sponses in several complex disordered systems

such as microemulsions, porous glasses, porous

silicon, aqueous solutions of polymers and com-

posite materials. The purpose of this paper is to

describe how DS can be utilized to investigate

complex systems to obtain information regarding

molecular mobility and the mesoscale structure

from the dielectric data.

2. Dielectric relaxation in ionic microemulsions near

the percolation threshold

Microemulsions are thermodynamically stable,

clear fluids composed of oil, water, surfactant, and

sometimes a co-surfactant. They have been widely

investigated during recent years because of their

numerous practical applications. The chemical

structure of surfactants may be low-molecular

weight as well as polymeric, with non-ionic or io-

nic components [36–38]. In the case of an oil-

continuous water in oil (W/O) microemulsion, at
low concentrations of the dispersed phase, the

structure is that of spherical water droplets sur-

rounded by a monomolecular layer of surfactant

molecules whose hydrophobic tails are oriented

towards the continuous oil phase [38–41].

The structure of the microemulsion depends on

the interactions between droplets. In the case of

repulsive interactions, the collisions of the droplets
are short and no overlapping occurs between their

interfaces. However, if the interactions are attrac-

tive, transient droplet clusters are formed. The

number of such clusters increases when the water

fraction, the temperature, the pressure, or the ratio

of water to surfactant is increased, leading to a

percolation in the system [42–48]. The percolation

behavior is manifested by the rapid increase in the
dc-electrical conductivity r and the static dielectric

permittivity es as system approaches the percola-

tion threshold (Fig. 1).

Fig. 1. The percolation behavior in AOT–water–decane mi-

croemulsion (17.5:21.3:61.2 vol%) is manifested by the tem-

perature dependencies of the static dielectric permittivity es ðN
left axis) and conductivity r (� right axis). Ton is the temperature

of the percolation onset; Tp is the temperature of the percolation

threshold. Insets are schematic presentations of the micro-

emulsion structure far below percolation and at the percolation

onset. (From [51]. With permission from Elsevier Science B.V.)
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The dielectric relaxation properties in a sodium

bis(2-ethylhexyl) sulfosuccinate (AOT)–water–de-

cane microemulsion near the percolation temper-

ature threshold have been investigated recently in

the broad temperature region [43,44,49]. The di-

electric measurements of ionic microemulsions
were carried out using the TDDS in a time window

of �1 ls.
It was found that the system exhibits a complex

non-exponential relaxation behavior that is

strongly temperature dependent (Fig. 2). An in-

terpretation of the results was done in the frame-

work of the dynamic percolation model [50].

According to this model, near the percolation
threshold, in addition to the fast relaxation related

to the dynamics of droplet components (s1 ffi 1 ns)

[51], there are at least two much longer charac-

teristic time scales. The longest process has a

characteristic relaxation time greater than a few

microseconds and is associated with the rear-

rangements of the typical percolation cluster. The

temporal window of the intermediate process is a
function of temperature. This intermediate process

reflects the cooperative relaxation phenomenon as-

sociated with the transport of charge carriers along

the percolation cluster [50,52,53]. Thus, due to the

cooperative nature of relaxation, the DCF decay

behavior contains information regarding the

transient cluster morphology at the mesoscale that

reflects the dynamical character of percolation.

The type of the relaxation law seen in time

domain is strongly dependent on the distance from

the percolation threshold. Fig. 3 shows in log–log

coordinates that at the percolation onset temper-

ature (�14 �C) the relaxation follows a fractional

power law: WðtÞ � ðt=s1Þ�l
. By the same token, in

the coordinates logW versus logðt=s1Þ in the close

vicinity of the percolation threshold Tp ¼ 26:5 �C,
the relaxation law changes from a power law

to stretched exponential behavior, i.e., WðtÞ �
exp½�ðt=smÞm
 (see Fig. 4). In the crossover region

Fig. 2. The dipole correlation function wðt=s1Þ for different

temperatures. The percolation threshold temperature Tp ¼
26:5 �C.

Fig. 3. The dipole correlation function wðt=s1Þ demonstrates

the power-law behavior for the temperature region near the

percolation onset (Ton ¼ 14 �C).

Fig. 4. The dipole correlation function wðt=s1Þ demonstrates

KWW behavior near the temperature of the percolation

threshold ðTp ¼ 26:5�C).
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the relaxation law is considered to be a product of

both the power law and stretched exponential

terms described by Eq. (1.14).

The results of the fitting of the experimental

dipole correlation functions to Eq. (1.14) are

shown in Figs. 5 and 6. One can see (Fig. 5) that
the magnitude of the parameter l decreases to

almost zero as the temperature approaches that of

the percolation threshold. This effect confirms the

statement mentioned above that at the percolation

threshold temperature the behavior of the dipole

correlation function is of the KWW type. The

stretched parameter m changes its value from �0.2
near the percolation onset to �0.8 in the vicinity of

percolation threshold. Notwithstanding the value

of m is not equal to zero at percolation onset, note

that the stretched exponential term with m ¼ 0:2
changes insignificantly in the considerable time

interval (�1 ls) and the decay of DCF wðtÞ is

governed mainly by the power law.

Fig. 6 plots the relaxation time, sm=s1 and the

amplitude A corresponding to the macroscopic

relaxation time of the decay function determined

by Eq. (1.14). Near the percolation threshold,

sm=s1 exhibits a maximum and reflects the well-
known critical slowing down effect [54].

A description of the mechanism of the cooper-

ative relaxation in the percolation region was

presented recently [44]. In the framework of the

theory of cooperative relaxation, it was shown that

the macroscopic dipole correlation function wðtÞ
of the system is given by

W tð Þ ¼ exp

�
� t

sm

� �m

þ B
t
s1

� ��
; ð2:1Þ

where sm ¼ s1W �1=m, and the microrelaxation time
s1 describes the charge transfer between two

neighboring droplets. The coefficient W ¼
W ½G;N ; k; m
 depends on the scaling parameter k,

on the number of cluster self-similarity stages N,

and it is a functional of the microscopic relaxation

function GðtÞ. The latter describes the elementary

act of a charge transfer. Coefficient B is the cor-

rection for the KWW function at short-time in-
tervals. Parameter m in (2.1) characterizes the

cooperative dynamics and structure of the fractal

clusters. The relationship between exponent m and

the fractal dimension Ds of the recursive fractal is

given by [44]

Ds ¼ 3m: ð2:2Þ
However, the recursive model describes neither the

cluster polydispersity (cluster size distribution),

nor the relaxation of the individual cluster.

Therefore, it is expedient to use the complementary

model in order to estimate cluster statistics and

dynamics in more detail. Such a model might be

developed in the framework of the general statis-
tical description.

Fig. 5. The temperature dependence of the exponents l (j) and

m (.) illustrate the transformation of the dipole correlation

function wðt=s1Þ from the power-law pattern to the KWW be-

havior at the percolation threshold.

Fig. 6. The temperature dependencies of the parameter sm (�
left axis) and A (N right axis), obtained by the fitting of the

relaxation-law (1.14) to the experimental data.
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To describe the percolation phenomenon in

ionic microemulsions in terms of the macroscopic

DCF, the geometrical substrate of the static lattice

site percolation model may be used. In this model

the statistical ensemble of various size clusters can

be presented by the distribution function as fol-
lows [55]:

w s; smð Þ ¼ Cw � s�X exp

�
� s
sm

�
: ð2:3Þ

Here Cw is the normalization constant, X is a

scaling exponent of the probability ‘‘per lattice

site’’ that the site, chosen randomly, belongs to the

s-cluster (a cluster that spans s lattice sites). The

value sm is corresponds to the maximal cluster size

[55,56].
We assumed that the mesoscopic dipole corre-

lation functions related to the s-cluster of the

geometrical substrate have the simplest exponen-

tial form G �zz;�zzsðsÞ½ 
 ¼ expb��zz=�zzsðsÞc. Here the di-

mensionless time �zz ¼ t=s1 is normalized by the

characteristic relaxation time s1; the time required

for a charge carrier to move the distance equal to

the size of one droplet. Similarly, we introduce the
dimensionless time �zzs ¼ ss=s1 where ss is the ef-

fective correlation time of the s-cluster, and the

dimensionless time �zzm ¼ sm=s1. The maximal cor-

relation time sm is the effective correlation time

correspondent to the maximal cluster sm. In terms

of the random walker problem, it is the time re-

quired for a charge carrier to visit all the droplets

of a maximal cluster sm. Thus, the macroscopic
DCF may be obtained by the averaging procedure

[57]

W �zz;�zzm smð Þ
h i

¼
Z 1

1

G �zz;�zzs sð Þ
h i

w s; smð Þds: ð2:4Þ

Here we present the dynamic percolation process

using the classical static site percolation model

[54,55]. For this purpose, we must be assume the

scaling relationship between sm; s1 and sm as fol-

lows:

�zzm ¼
sm
s1
¼ sgm; sm !1; g > 0; ð2:5Þ

where g ¼ 1=Dd is an exponent reciprocal to the

dynamic fractal dimension Dd. In order to retain

the self-similarity of the temporal scaling, the

scaling law for the clusters of size s < sm must be

the same as defined by relation (2.5), i.e.

�zzs sð Þ ¼ sg: ð2:6Þ
Taking into account relationships (2.5) and (2.6),

in the limit of a long time �zz� 1, the integration of

(2.4) may be fulfilled asymptotically by the saddle-

point method [33]. The main term of the asymp-

totic expansion is represented as the multiplication

of power and stretch exponential universal relax-

ation laws:

W �zz

 �

ffi C�zzð1�2cÞ=½2ð1þgÞ
 exp½�Q � �zz1=ð1þgÞ


¼ A�zz�l exp

"
� �zz

�zzm

 !m#
; ð2:7Þ

where

Q ¼ ðgsmÞ�½g=ð1þgÞ
ð1þ gÞ; C ¼ CwK;

and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
gð1þ gÞ

s
ðgsmÞ½gþ2ð1�XÞ
=2ð1þgÞ

:

Using (2.7) it is possible to ascertain the rela-

tionship between the structural parameters

g;X; sm;Cw and the set of fitting phenomenological

parameters m; l;�zzm;A as follows:

g ¼ 1

m
� 1; X ¼ l

m
þ 1

2
;

sm ¼
1

g
�zzm

 �1=g

1ð þ gÞð1þgÞ=g
; Cw ¼

A
K
:

ð2:8Þ

Thus, the set of structural parameters obtained by

fitting using relationship (2.8) can be used to re-

construct the cluster size distribution function

wðs; smÞ and to treat the dynamic percolation in

ionic microemulsions in terms of the classical static

percolation model.

It was shown [57] that the dynamic fractal di-

mension Dd ¼ 1=g may be associated with the
conventional static fractal dimension Ds. From the

classical static site percolation model, it is known

that Ds can be obtained from the spatial scaling

L=lð ÞDs / sm: ð2:9Þ
Here L is the macroscopic linear lattice size related
to the distance between the internal and external

Y. Feldman et al. / Chemical Physics 284 (2002) 139–168 145



electrodes of the cylindrical sample cell and l is the

linear size of the microdroplet (diameter) in the

actual experimental condition [57]. In order to

establish the relationship between Ds and Dd it is

helpful to introduce the dimensionless coefficient
associated with the macroscopic spatial and time

scales of the system as follows:

H ¼ ðsm=s1ÞðL=lÞ :

The static fractal dimension can then be calculated

from the dynamic fractal dimension using the

following formula [57]:

Ds ¼
Dd

1� Dd
lnH
ln sm

: ð2:10Þ

For the actual experimental setup, where
L ¼ 2� 103 [58], and l ¼ 5� 10�9 [43], the non-

dimensional lattice size is equal to L=l ¼ 4� 105.

Fig. 7 shows the temperature dependencies of the

static fractal dimensions of the maximal cluster.

Note that at percolation temperature the value of

the static fractal dimension Ds is extremely close to

the classical value 2.53 for a three-dimensional

lattice in the static site percolation model [54].
Moreover, the temperature dependence of the

stretch parameter m (see Fig. 7) confirms the va-

lidity of our previous result (see Eq. (2.2)) Ds ¼ 3m
for the percolation cluster [44].

Another interesting feature of this approach is

the possibility to interpret percolation in micro-

emulsions in terms of the conventional distribution

of relaxation times, gðsÞ. Using relationships (2.3),

(2.5) and (2.6) we can present gðsÞ as follows:

gðsÞ ¼ Cg
s
s1

 !ð1�g�XÞ=g

exp

�
� s

sm

 !1=g
3
5;

s1 6 s61: ð2:11Þ

Here the normalization constant Cg may be cal-

culated with taking into account the normalization

condition
R1

s1
g sð Þds ¼ 1:

Cg¼ gsm �
sm
s1

� �ð1�X�gÞ=g

C X

" 
þ1;

sm
s1

� ��1=g#!�1
;

ð2:12Þ
where

C q; xð Þ ¼
Z 1

x
yq�1 expð�yÞdy

is an incomplete Gamma-function.

Fig. 8 shows the relaxation time distribution
~gg sð Þ ¼ g sð Þ=gmax for two typical temperature

values in the percolation onset region ðTon ¼ 14

�C) and the percolation threshold ðTp ¼ 26:5 �C).
In this figure we plot the distribution function

Fig. 7. The temperature dependencies of the static Ds ðMÞ
fractal dimensions and the product 3m (�). At the percolation

threshold temperature (Tp ¼ 26:5 �C) Ds ¼ 3m.

Fig. 8. The distribution functions ~gg sð Þ ¼ g sð Þ=gmax for two

typical temperatures: at the percolation onset Ton ¼ 14 �C (�)
and at the percolation threshold Tp ¼ 26:5 �C (�). Each distri-

bution function is normalized on its maximal value gmax at the

interval 16 s=s1 <1.
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normalized on its maximal value gmax at the in-

terval 16 s=s1 <1. The structural parameters g
and X in (2.11) and (2.12) are calculated in this

temperature interval by using the values of the

fitting parameters l; m and relationship (2.8). The

qualitative change of ~gg sð Þ is observed when the
microemulsion approaches the percolation

threshold. The power law of the distribution

function at percolation onset testifies that the

macroscopic DCF is the result of the small clusters

averaging with a moderate value of polydispersity.

Thus, near the percolation onset the relaxation

occurs due to the grown of a significant number of

parallel small clusters. Near the percolation, the
function ~gg sð Þ is governed by the unimodal function

with a well-distinguished maximum [11]. Such be-

havior is typical for the statistical contribution to

the macroscopic DCF on the scale of the percola-

tion cluster.

3. Dielectric relaxation of water absorbed in porous
glasses

Non-Debye dielectric relaxation in porous silica

glasses is another example of the dynamic prop-

erties of complex systems on a mesoscale. The

porous silica glasses obtained from sodium bo-

rosilicate glasses are defined as bicontinuous ran-

dom structures of two interpenetrating percolating
phases, the solid and the pore networks. The pores

in the glasses are connected to each other and the

pore size distribution is narrow. The characteristic

pore spacing depends on the method of prepara-

tion, and can be between 2 and 500 nm [59]. A

rigid SiO2 matrix represents the irregular structure

of porous glasses. Water can be easily adsorbed on

the surface of this matrix. The dielectric response
is found to be very sensitive to the geometrical

nano- and mesostructural features of the porous

media and amount water molecules in the ad-

sorptive layer on the pore surface.

The dielectric relaxation properties of silica

glasses over broad frequency and temperature

ranges have been investigated recently [60–63]. The

typical spectra of the dielectric permittivity and
losses associated with the relaxation of water

molecules of the adsorptive layer for the studied

porous glasses versus frequency and temperature

are displayed in Figs. 9(a) and (b). One can see

that the complex dielectric behavior can be de-

scribed in terms of the four distributed relaxation

processes.

The first relaxation process, which is observed in
the low temperature region from )100 to +10 �C is

due to the reorientation of the water molecules in

ice-like water cluster structures. It was shown that

the hindered dynamics of the water molecules lo-

cated within the pores reflect the interaction of the

absorptive layer with the inner surfaces of the

porous matrix [60,62].

The second relaxation process has a specific
saddle-like shape and is well marked in the tem-

perature range of )50 to +150 �C. This relaxation
process is thought to be a kinetic transition due to

water molecule reorientation in the vicinity of a

defect [62,63].

The third relaxation process is located in the

low-frequency region and the temperature inter-

val 50–100 �C. The amplitude of this process
essentially decreases when the frequency in-

creases and the maximum of the dielectric per-

mittivity versus temperature has almost no

temperature dependence (Fig. 10). Finally, the

low-frequency ac-conductivity r demonstrates an

S-shape dependency with increasing temperature

(Fig. 11), which is typical for percolation [43,61].

The dielectric relaxation process here is due to
percolation of the apparent dipole moment ex-

citation within the developed fractal structure of

the connected pores [60,61,63]. This excitation is

associated with the self-diffusion of the charge

carriers in the porous net. Note that in the dis-

tinction from dynamic percolation in ionic mi-

croemulsions the percolation in porous glasses

appears via the transport of the excitation
through the geometrical static fractal structure of

the porous medium.

In the high temperature region, above 150 �C,
the glasses become electrically conductive and

show an increase in dielectric permittivity and di-

electric losses in the low-frequency limit. This re-

laxation process thought to be related to the

Maxwell–Wagner–Sillars polarization process be-
cause of free charge carriers trapped at the inter-

face, thus causing a build-up of macroscopic
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charge separation, or space charge with a relatively

long relaxation time [60].

In this section, we will consider in more detail
the non-Debye dielectric response associated with

percolation through the net of connected pore

channels. The movement of charge carriers results

in a transfer of the electric excitation within the

channels along random paths. A detailed descrip-

tion of the relaxation mechanism associated with

an excitation transfer based on regular and sta-

tistical fractal models is introduced in Section 2,

where it was applied to the cooperative relaxation

of ionic microemulsions at percolation. For both

these models the time dependence behavior of the

dipole correlation function WðtÞ may be written in

the form of an asymptotic stretched-exponential
term

Fig. 10. The typical temperature dependence (for sample E) of

the complex dielectric permittivity real part at different fre-

quencies (j – 8.65 kHz; d – 32.4 kHz; N – 71.4 kHz).

(a) (b)

Fig. 9. The typical three-dimensional plot of the complex dielectric permittivity real e0 (a) and imaginary part e00 (b) versus frequency
and temperature for porous glass (sample E).

Fig. 11. Typical temperature dependence of the low-frequency

ac-conductivity r of the sample E.
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WðtÞ ¼ exp

"
� t

sm

� �Dp=3
#
: ð3:1Þ

This result reflects the general ideas developed in

[64,65] that transfer of the electric excitation in

various condensed media occur by the transport

from a donor unit to an acceptor unit through

many parallel channels. In order to determine the
value of the fractal dimension Dp of the paths of

excitation transfer within the porous medium, the

relaxation law (3.1) can be further fitted to the

experimental correlation functions. If the fractal

dimension of these paths coincides with the fractal

dimension of the pore space, then it can be used

for obtaining the porosity.

The dielectric relaxation at percolation is ana-
lyzed in time domain since the theoretical relax-

ation model described above is formulated for the

dipole correlation function WðtÞ. For this purpose
the complex dielectric permittivity data were ex-

pressed in terms of the DCF using (1.3) and (1.11).

Fig. 12 shows typical examples of the DCF, ob-

tained from the frequency dependence of the

complex permittivity at the percolation tempera-
ture, corresponding to several porous glasses

studied recently [60–63].

As mentioned earlier, the DCF consists of two

processes. Therefore, in order to separate the long-

time percolation process, the DCF was fitted as a

sum of two functions. The KWW function (3.1)

was used for fitting the percolation process and the

product (1.14) of the power law and the stretched
exponential function (as a more common presen-

tation of relaxation in time domain) was applied

for the fitting of the additional short-time process.

The values obtained for Dp of different porous

glasses are presented in Table 1. The glasses

studied are differing in the way of preparation,

which affects the size of the pores, porosity and

availability of second silica and ultra-porosity
[60–63].

One can see that the fractal dimension of the

excitation paths in sample A is close to unity.

Topologically, this value of Dp corresponds to the

propagation of the excitation along a linear path

that may correspond to a presence of second silica

within the pores. Indeed, the silica gel creates a

subsidiary tiny scale matrix with an enlarged
number of hydration centers within the pores.

Since these centers are distributed in the pore

volume, the excitation transmits through the vol-

ume and is not related to the hydration centers

located on the pore surface of the connective

pores. Due to the large number of hydration cen-

ters, and the short distance between the neigh-

boring centers, the path can be approximated by a
line with a fractal dimension close to unity.

The fractal dimensions of the excitation paths

in samples B, C, and E have values between 1 and

Fig. 12. Semi-log plot of the dipole correlation wðtÞ of all the
samples studied at the temperature corresponding to percola-

tion (� – sample A; � – sample B; M – sample C; O – sample D;

} – sample E; � – sample F; � – sample G). The solid lines are

the fitting curves of the sum of the KWW and the product of

KWW and the power-law relaxation function.

Table 1

The values of KWW exponent m, fractal dimension Dp, porosity

Um obtained from relative mass decrement (A, B, C and D

glasses) and gas adsorption (E, F and G glasses) measurements

and average porosity Up

� �
estimated from dielectric spectra for

porous glasses samples

Sample m Dp Um Up

� �
A 0.33 0.99 0.38 0.33

B 0.63 1.89 0.48 0.47

C 0.44 1.31 0.38 0.37

D 0.83 2.50 0.50 0.68

E 0.65 1.96 0.27 0.49

F 0.80 2.40 0.43 0.63

G 0.73 2.20 0.26 0.56
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2. In contrast, to sample A, the silica gel in these

samples is leached out, i.e. water molecules are

adsorbed on the inner pore surface. The values of

Dp observed in samples B, C, and E can be ex-

plained in one of two ways. On one hand, the

surface can be defractalized upon deposition of an
adsorbed film of water, which results in the

‘‘smoothing’’ of the surface. On the other hand,

the transfer of the excitation in these samples oc-

curs along the inner pore surface from one hy-

dration center to another. The distance between

the centers is significantly larger than the small-

scale details of the surface texture. Therefore, the

fractal dimension observed is that of the chords
connecting the hydration centers and should be

less than 2, which is in agreement with the data

obtained from the energy-transfer measurements

[66,67].

The fractal dimensions of the excitation paths

in samples D, F, and G are in the range between

2 and 3. Thus, percolation of the charge carriers

(protons) is also moving through the SiO2 matrix
because of the availability of an ultra-small po-

rous structure that occurs after special chemical

and temperature treatment of the initial glasses

[63].

Note that the fractal dimensions discussed here

are the fractal dimensions of the excitation transfer

paths connecting the hydration centers located on

the inner surface of the pores. Due to the low
humidity, all of the water molecules absorbed by

the materials are bound to these centers. The paths

of the excitation transfer span along the fractal

pore surface and ‘‘depict’’ the backbone of clusters

formed by the pores on a scale that is larger than

the characteristic distance between the hydration

centers on the pore surface. Thus, a fractal di-

mension of the paths Dp approximates the real
surface fractal dimension in the considered scale

interval. In this case, Dp can be also associated

with the fractal dimension Dr of the porous space:

Dp ffi Dr. Therefore, the fractal dimension Dp can

be used for porosity calculations in the framework

of the fractal models of the porosity.

The porosity Up of a two-phase solid-pore sys-

tem can be defined as the ratio of the mean volume
of the whole empty space volume, Vp, to the whole

volume, V, of a sample [68]:

Up ¼
Vp
V
: ð3:2Þ

Disordered porous media have been adequately

described by the fractal concept [61,69]. It was

shown that if the pore space is determined by its

fractal structure, the regular fractal model could be

applied [61]. This implies that for the volume ele-
ment of linear size K, the volume of the pore space

is given in units of the characteristic pore size k by

Vp ¼ Gg K=kð ÞDr , where Dr is the regular fractal

dimension of the porous space, K coincides with

the upper limit and k with the lower limit of the

self-similarity. The constant Gg is a geometric

factor. Similarly, the volume of the whole sample

is scaled as V ¼ GgðK=kÞd , where d is the Euclidean
dimension ðd ¼ 3Þ. Hence, the formula for the

porosity in terms of the regular fractal model can

be derived from Eq. (3.2), and is given by

Up ¼
k
K

� �d�Dr

: ð3:3Þ

In general, in order to embrace variety of porous

media the random fractal model can be considered

[61,69]. Randomness can be introduced in the

fractal model of a porous medium by the as-

sumption that the ratio of the scale parameters

k=K is random in the interval ½k=K; 1
, but the

fractal dimension in this interval is a determined

constant. Hence, Eq. (3.3) reads as

Up

� �
¼
Z 1

n0

Up n;Drð Þw nð Þdn; ð3:4Þ

where n0 is the minimal value of the scale param-
eter n in the interval ½k=K; 1
, and wðnÞ measures

the probability density to find some scale param-

eter in the range from n to nþ dn.
For a percolating medium the generalized ex-

ponential pore-size distribution function of the

scale for porous medium can be written as

wðnÞ � naw expð�awnbwÞ: ð3:5Þ

This function accounts for the mesoscale region

and comprises most of the listed distribution

functions [61]. It includes three empirical param-

eters, aw, bw, and aw. After ascertaining the rela-

tionships between these parameters and the

properties of anomalous self-diffusion, fractal
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morphology, and polydispersity of the finite pore-

size, the physical significance can be assigned to

these parameters in the framework of the perco-

lation models [54].

On the length scale, larger than the pore sizes
the morphology of the glass porous space can be

modeled as a random-packed assembly of clusters

formed by pores connected to each other [66,70].

In order to find the fractality in such porous

glasses we must assume that the pore structure has

a fractal character in a rather narrow scale range,

i.e. the clusters are self-similar on the scale range

less than two orders of magnitude in length
ðk=K P 0:01Þ. Hence, in the interval ½k=K; 1
 the
uniform distribution function, wðnÞ ¼ w0, can be

chosen as a first approximation of the function

derived by Eq. (3.4). The value of w0 is determined

from the normalization condition
R 1

n0
wðnÞdn ¼ 1,

and reads as w0 ¼ 1=ð1� n0Þ. In this approxima-

tion, by substituting this uniform distribution

function into integral (3.4) and integrating it, we
obtain the relationship for the average porosity as

Up

� �
¼ 1

1þ d � Dr

� 1� n1þd�Dr

0

1� n0

: ð3:6Þ

Then, by taking into account that 0:016 n0 � 1

and d ¼ 3, we obtain a simple approximate rela-

tionship between the average porosity of a glass

and the fractal dimension of the pore space, which

reads

Up

� �
� 1

4� Dr

: ð3:7Þ

Note, that in our approximation, due to the ran-

domized character of the fractal medium, the av-

erage porosity of the disordered porous glasses

determined by Eq. (3.7) depends only on the
fractal dimension Dr. The magnitude of the fractal

dimension in Eq. (3.7) depends on the length scale

of a measurement extending from k to over K,

where the minimal scale k and the maximal scale K
are determined by the measurement technique.

The results of the porosity calculation using Eq.

(3.7) together with the fractal dimension deter-

mined from dielectric measurements are shown in
the last column of Table 1. These values can be

compared with the porosity Um determined from

the relative mass decrement (A, B, C and D glas-

ses) and gas adsorption (E, F and G glasses)

measurements shown in the same Table 1. Note

that the values obtained from dielectric spectros-

copy coincide with the porosity data obtained

from the relative mass decrement method only for

samples A, B and C. The porosity values for the
other samples obtained through the dielectric

measurements are significantly larger. This corre-

lates with the availability of ultra-small porous

structures with penetrability for the smallest

charge carriers (such as protons) [63]. Thus, in the

case of a net of super small open pores, the di-

electric response is more sensitive and accurate in

the determination of real porosity than any other
conventional method.

4. Dielectric relaxation in porous silicon

The non-Debye dielectric relaxation was also

observed also in porous silicon (PS) [22,71]. PS

has attracted much attention recently, mainly due

to the interesting optical and electro-optical

properties of PS structures that can be utilized for

device applications [72–75]. So far, most of the

activity in this field has focused on the intense
visible photoluminescence (PL) from PS and the

underlying physical mechanism that is responsible

for the generation of light. In addition, transport

and dielectric relaxation phenomena in PS have

also attracted considerable attention for injection

type PS devices. It was mentioned in the previous

section that the correlation between the morphol-

ogy of porous media and their dielectric properties
have already been studied in works [60,68]. In

many porous media, these phenomena are directly

related to the fractality, and the nano- and the

mesostructural properties of these disordered sys-

tems [60,61,76–78]. In principle, one would expect

to find a similar correlation between the microge-

ometry and the dielectric properties of PS media.

However, several experimental reports indicate
that such a simple picture cannot be applied to PS.

For example, dc-conductivity measurements dem-

onstrate the dual transport mechanism that has

been assigned to thermally activated hopping and

exited charged carriers tunneling [79]. As a result,

carriers excited to the band tail would give rise to a
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thermally activated dc-conduction with an activa-

tion energy of about 0.5 eV [22,80]. This activation

energy is less than half the optical band-gap of PS

deduced from PL experiments [72]. The ac-con-

ductivity measurements in PS revealed complex

transport properties due to a random walk in
fractal geometry and thermally activated hopping,

as in the case of dc conductivity [22]. Therefore, it

is commonly accepted that both the nanogeome-

try, the nature of the Si nanocrystallites that form

the PS medium and their surfaces as well as the

host matrix all contribute to the electrical and

optical properties of PS.

The dielectric relaxation properties in PS with
different thicknesses have been investigated re-

cently in the broad frequency and temperature

region [71]. The dielectric properties of the PS

samples were measured in the 20 Hz to 1 MHz

frequency range and in the 173–493 K temperature

interval. For all the dielectric measurements, the

amplitude of a sinusoidal ac voltage source was

kept constant at 1 V so that the average electric
field across our sample is about 300 V/cm. It was

verified that the response is linear with respect to

the ac voltage amplitude such that a linear re-

sponse analysis can be utilized for our sample.

Three-dimensional plots of both the measured

real part e0 and the imaginary part e00 of the com-

plex dielectric permittivity versus frequency and

temperature for 20 lm PS sample are shown in
Figs. 13(a) and (b). From the figure one can

identify three distinct processes, marked by I, II

and III, defined as follows:

Low temperature process I. This process extends

over low temperatures (170–270 K). Despite the

fact that both the real and imaginary parts of the

dielectric function display this process, it can be

appreciated most by looking at e00 at high fre-
quencies and low temperatures where the local

maximum, which shifted to higher frequencies

with increasing temperature, can be easily de-

tected.

Mid temperature process II. This process ex-

tends over the mid-range temperatures (300–400

K) and over low to moderate frequencies (up to

105 Hz).
High temperature process III. This process is

very significant at high temperatures (>400 K). Its

amplitude increases very rapidly with decreasing

frequency for both the real and imaginary parts of

the dielectric function. Similar processes were also

observed for the 30 lm thickness sample.

All three processes exhibit a complex non-ex-

ponential relaxation behavior, and correspond to
another good example of the non-Debye dielectric

response. Let us consider here in more detail only

the low and middle temperature processes.

4.1. Low temperature process I

Typical spectra of the real and the imaginary

parts of the dielectric permittivity at 233 K for the
30 lm sample are shown in Fig. 14. Excellent fits

for both the real and the imaginary parts of the

dielectric permittivity for all temperatures (170–

270 K) were obtained by taking into account two

HN (Eq. (1.10)) processes and the Jonscher term.

Two relaxation times (s1 and s2) are extracted

from the fitting of the HN processes for both

samples and are plotted versus inverse temperature
in Fig. 15. Both relaxation times demonstrate

Arrhenius behavior, sj / expð�Ea;j=kT Þ, with Ea;j

being the activation energy of the process. The

fitting (shown by the solid lines in Fig. 15, the first

and the second relaxation processes) yields acti-

vation energies of 0.28 and 0.4 eV for the 20 lm
sample and of 0.2 and 0.3 eV for the 30 lm sample,

respectively. Note that for all temperatures and
samples used in this study b ¼ 1. Hence, the CC

relaxation type is adequate for a description of the

low-temperature relaxation processes in PS.

A model was proposed to explain the existence

of two activation energies corresponding to two

groups of excited states in PS [71], based on the

presentation of PS as a random network of Si

nanocrystallites [73,80]. Hence, these excited states
would contribute to thermally activated transport

processes with temperature dependent relaxation

times as observed in our measurements and shown

in Fig. 15.

4.2. Mid temperature process II and porosity

determination

In the previous work [81], we used a superpo-

sition of two Jonscher terms of the form
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B1ðixÞu1�1 þ B2ðixÞu2�1 to describe mid-tempera-
ture relaxation processes. The results of our fitting

were in good agreement with those of Ben-Chorin

et al. [22]. They were discussed in terms of the

transport of charged carriers at the different scales.

The high-frequency Jonscher exponent was asso-

ciated with the typical size of the Si nanocrystal-

lites, while the low-frequency (LF) exponent was

assigned to the transport of charged carriers across
a disordered fractal structure of porous silicon

[81–83]. At the same time the mid temperature

process II demonstrates several specific features

that are similar to those observed in other porous

systems that were discussed in the previous section

[60–63]. The amplitude of this process essentially

decreases when the frequency increases (Fig.

13(a)). Further more, the maximum of the dielec-
tric permittivity versus temperature has almost no

temperature dependence (Fig. 13). Finally, the

low-frequency ac conductivity increases with the

increase in temperature and has an S-shape de-

pendency (Fig. 16), which is typical for percolation

processes [43,61]. Thus, we will analyze this pro-

cess in the same way we did for percolation in

porous glasses (see Section 3) [60,61,76–78].
The experimental macroscopic DCF for PS

samples with porous layers of 20 and 30 lm, ob-

tained by inverse Fourier transform, are shown in
Fig. 17. The correlation functions then were fitted

by KWW expression (1.12) with determination of

the fractal dimension Dp of the percolation path.

Applying the same routine to determine the po-

rosity in other porous systems [61,76–78], the av-

erage porosity of the porous silicon was evaluated

with the help of relationship (3.7). The results are

presented in Table 2. The values of porosity de-
termined from the dipole correlation function

analysis are in good agreement with porosity val-

ues determined by weight loss measurements dur-

ing PS preparation (before and after the

anodization process).

Thus, the non-Debye dielectric behavior in

AOT microemulsions, silica glasses, and PS has

similar properties. These systems exhibit an inter-
mediate temperature percolation process that is

associated with the transfer of the electric excita-

tions through the random structures of fractal

paths. It was shown that at the mesoscale range

the fractal dimension of the complex material

morphology (Dr for porous glasses and Ds for the

microemulsions) coincides with the fractal dimen-

sion Dp of the path structure. This value can be
evaluated by the fitting of the experimental DCF to

the stretched-exponential relaxation law (3.1).

(a) (b)

Fig. 13. Three-dimensional plots of the frequency and temperature dependence of the real e0 (a) and imaginary part e00 (b) of the
complex dielectric permittivity for the 20 lm PS sample.
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5. Symmetric dielectric spectrum broadening in

disordered materials

In the previous sections, we presented several

examples of the non-exponential dielectric re-

sponse in time domain. These have all obeyed the

two models developed in Section 2. These models

enable us to determine some topological properties
of the investigated complex systems. However, the

frequency representation has its own advantages.

In particular, the non-dissipative part of the sys-

tem response to an external perturbation and the

dissipative part are clearly separated in frequency

domain as the real and imaginary parts of the

complex permittivity, while in time domain these

effects are ‘‘mixed’’ together in the relaxation

function. The separation of response itself and

dissipative effects in time domain is not obvious,

Fig. 16. Temperature dependence of the low-frequency con-

ductivity of the 20 lm sample (d), and the 30 lm sample (N).

Fig. 14. The measured real (top) and imaginary (bottom) parts

of the complex dielectric permittivity versus frequency at low

temperature (233 K). The dashed lines marked J, HN 1 andHN

2 are the Jonscher term (1.13) and the two HN (1.12) semi-

empirical terms, respectively, used for fitting of the experi-

mental data points (d). The solid lines are superpositions of the

above terms, which fit the experimental data. The sample

thickness is 30 lm.

Fig. 15. Arrhenius plot (semi-log scale versus the inverse tem-

perature) of the two characteristic relaxation times, s1 (j) and

s2 (d) for the 20 lm sample, and s1 (�) and s2 (s) for the 30 lm
sample, for low temperature process I.
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although it is possible in principle by using the

appropriate integral transform. In spite of the ex-

istence of the one mapping between the time and
frequency domain by the Laplace transform, the

separation in frequency representation may at

times be more convenient for analysis of the dy-

namic processes in complex systems.

5.1. Relaxation peak broadening and its relationship

to the dynamical and topological properties

As mentioned in the introduction, the experi-

mental dielectric response in frequency domain for

most complex systems cannot be described by a

simple Debye expression (1.6) with a single di-

electric relaxation time. In most general way this

dielectric behavior can be described by the phe-

nomenological HN formula (1.10).

Usually the exponents a and b are referred to as

measures of symmetrical and unsymmetrical re-

laxation peak broadening. These names are the

consequence of the fact that the imaginary part of

the complex permittivity for the HN dielectric

permittivity shows power-law asymptotic forms
Imfe�ðxÞg � xa and Imfe�ðxÞg � x�ab in the low-

and high-frequency limits, respectively. The ex-

perimental data show that a and b are strictly

dependent on temperature, structure, composition,

pressure and other controlled physical parameters

[2,15,16,84–91]. There is no complete understand-

ing or universal models of these dependencies for

the time being. However, over the last years sig-
nificant progress in this direction has been made

[19,20,27–29,92–98]. Many efforts [99–101] were

undertaken in order to understand the relaxation

dynamics of the glass-forming liquids and different

polymer mixtures before the work [102] where the

concentration fluctuation model was introduced.

In the framework of this model, a reasonable ex-

planation of the a-relaxation process in homoge-
neous polymer mixtures was presented. Although

the relaxation peak broadening was discussed in

[102] there are no relationships derived for expo-

nents a and b versus structural or dynamical pa-

rameters.

This kind of non-exponential response is ob-

served in numerous physical systems and does not

only describe their dielectric properties. For in-
stance, in the works [95,96] the Monte Carlo sim-

ulation of random walks on two-dimensional

fractal structures was carried out. It was shown

there that the complex susceptibility of this process

has the power-law frequency asymptotic similar to

theHN type. Moreover, the model coupling theory

[87] ascribes to the power-law exponents a uni-

versal nature by virtue of the universality of the
correlation functions for different dynamical vari-

ables.

There is also a set of works where the mathe-

matical formalism of fractional calculus [103,104]

was applied to the anomalous diffusion and re-

laxation problems. The physical applications as

well as the mathematical issues of fractional cal-

culus were recently investigated in the book [93].
The review [27] discusses anomalous diffusion in

detail. In the works [19,20,92], the relaxation

Fig. 17. Semi-log plot of the macroscopic correlation function

of the 20 lm sample (d) and the 30 lm sample (N) at the

temperature corresponding to percolation. The solid lines cor-

respond to the fitting of the experimental data by KWW re-

laxation function.

Table 2

The values of KWW exponent m, fractal dimension Dp, porosity

Um obtained from relative mass decrement measurements and

average porosity Up

� �
estimated from dielectric spectra for

porous silicon samples of 20 and 30 lm thickness [71]

Sample

thickness

m Dp Um Up

� �

20 lm 0.88 2.64 0.78 0.74

30 lm 0.87 2.61 0.75 0.72
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equation for the HN processes was obtained.

Nevertheless, for the time being there is no

unambiguous clear understanding of the non-ex-

ponential response in complex disordered hetero-

geneous systems. Therefore, an understanding of

the relationship between a and b exponents and
the physical properties of the systems is very im-

portant.

In this section we will consider the specific case

of the HN formula b ¼ 1, 0 < a < 1, correspond-

ing to symmetric relaxation peak broadening or to

the so-called CC law [13]. The complex dielectric

permittivity e�ðxÞ for the CC process is repre-

sented in the frequency domain as

e�ðixÞ ¼ e1 þ
es � e1

1þ ðixsÞa : ð5:1Þ

In order to explain the non-Debye response

(5.1) it is possible to use the memory function

approach [19,20,27,92,105–107]. Thus, the nor-
malized dipole correlation function WðtÞ corre-

sponding to a non-exponential dielectric relaxation

process obeys the equation

dWðtÞ
dt

¼ �
Z t

0

mðt � t0ÞWðt0Þdt0; ð5:2Þ

where mðtÞ is the memory function, and t is the

time variable. The specific form of the memory

function is dependent on the features of relaxation.
After Laplace transform (1.4), in virtue of the

convolution form, Eq. (5.2) reads as

pF ðpÞ � 1 ¼ �MðpÞF ðpÞ; ð5:3Þ
where F ðpÞ and MðpÞ are Laplace images of WðtÞ
and mðtÞ. Combining (5.3) with (5.1) and taking

into account the relationship between the complex
permittivity and the correlation function, (1.3),

one can obtain the Laplace image of the memory

function for the CC process in the form

MðpÞ ¼ p1�as�a: ð5:4Þ

Since 0 < a < 1 the exponent in Eq. (5.4)

1� a > 0. The mathematical implication is that

MðpÞ (5.4) is a multi-sheet function of complex

variable p. In order to represent this function in

the time domain one should to select the schlicht

domain using supplementary physical reasons
[108]. These computational constraints can be

avoided by using Riemann–Liouville fractional

differential operator 0D1�a
t . By definition [103,104]

of the Riemann–Liouville fractional differentiation

operator

0Dc
t ½hðtÞ
 ¼

d

dt 0
Dc�1

t ½hðtÞ
; 0 < c6 1; ð5:5Þ

where

0D�vt ½gðtÞ
 ¼
1

CðmÞ

Z t

0

ðt � t0Þv�1gðt0Þdt0;

0 < v6 1; ð5:6Þ

is the Riemann–Liouville fractional integration

operator. In this last formula CðmÞ ¼ Cðm; 0Þ is the
complete Gamma-function. Thus, from the defi-

nitions one can easily see that the Laplace image of

0D1�a
t ½WðtÞ
 is

L̂L½0D1�a
t ½WðtÞ

 ¼ p1�aF ðpÞ � C;

where

C ¼ D�a
t ½WðtÞ
jt¼þ0:

ð5:7Þ

Taking (5.7) into account we can rewrite Eq. (5.2)

with the memory function (5.4) as follows:

dWðtÞ
dt

¼ �s�a
0D1�a

t ½WðtÞ
: ð5:8Þ

Note that the relationship between the complex

permittivity and correlation function (1.3), to-
gether with Eq. (5.1) leads directly to the require-

ment that C ¼ 0.

Eq. (5.8) was already discussed elsewhere

[19,20,92,109] as a phenomenological representa-

tion of the dynamic equation for the CC law.

Thus, Eq. (5.8) shows that since the fractional

differentiation and integration operators have a

convolution form it can be regarded as conse-
quence of the memory effect. A comprehensive

discussion of the memory function (5.4) properties

is presented in [19,20,92]. Accordingly, Eq. (5.8)

holds for some cooperative domain and describes

the relaxation of an ensemble of microscopic units.

Each unit has its own microscopic memory func-

tion mdðtÞ, which describes the interaction between

this unit and the surroundings (interaction with
the statistical reservoir). The main idea of such an

interaction was introduced in [19,20,92] and sug-

gests that mdðtÞ �
P

i dðti � tÞ (see Fig. 18). It
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reflects the interrupted interaction between the

relaxing unit and its neighbors. The time moments

ti (the time position of the delta functions) are the

moments of the interaction. The sequence of ti,
constructs a fractal set (the Cantor set for exam-

ple) with a fractal dimension 0 < df 6 1. This
statement is related to the idea that cooperative

behavior provides some ordering and long lasting

scaling. Following these assumptions the memory

function mðtÞ for a cooperative domain can be

obtained as a result of averaging over the ensemble

of mdðtÞ (see Fig. 19 where for more convenient

representation IðtÞ ¼
R t
0
mðt0Þdt0 is plotted instead

of mðtÞ. The requirements of measure conservation
in the interval ½0; 1=f
 and conservation of the

fractal dimension df for all mdðtÞ give this averag-

ing as [19,92]

mðtÞ ¼
Z 1=2

�1=2
mdðf�utÞf�uð1�df Þ du

and

MðpÞ � p1�df :

ð5:9Þ

Thus, the memory function (5.4) is a cooperative
one and the CC behavior appears on the macro-

scopic level after averaging over the ensemble of

microscopic dipole active units. Comparing (5.4)

and (5.9) one can establish that a ¼ df . This result
once again highlights the fact that in this model the

fractal properties on a microscopic level induce the

power-law behavior of memory functions (5.4),

(5.9) and CC permittivity (5.1) on a macroscopic
level.

By definition [55,56], the fractional dimension is

given by

df ¼ a ¼ lnðNÞ
lnðfÞ : ð5:10Þ

Here the scaling parameter f is the dimensionless

time interval size and N is the number of delta

functions (relaxation acts) in that interval. How-

ever, a characteristic time constant of the CC

process is the relaxation time s: Thereby, the
scaling parameter f and the relaxation time should

be proportional to each other

f ¼ s
s0
: ð5:11Þ

The constant minimal s0 is the cutoff time of the
scaling in time.

In the general case, different physical conditions

can determine the fractal properties of the micro-

scopic memory function mdðtÞ and, consequently,
the power-law time dependence of the macroscopic

memory function (5.9). However, there is a com-

puter simulation proof [95] that an anomalous

relaxation on a fractal structure exhibits a CC

behavior. Therefore, one can suppose that the

memory function (5.9) has its origin in the geo-

metrical self-similarity of the investigated system.

Thus, the scaling parameter N actually is the

number of points where the relaxing units are in-

teracting with the statistical reservoir (i.e. by the

Fig. 18. Schematic picture of mdðtÞ dependency. ti are the time

moments of the interaction that construct in time a fractal

Cantor set with dimension df ¼ ln 2= ln 3 ffi 0:63.

Fig. 19. Schematic presentation which illustrates averaging

of mðtÞ over an ensemble of microscopic units. Here

IðtÞ ¼
R t
0
mðt0Þdt0. Curve 1 corresponds to the cooperative en-

semble of a single microscopic unit with ti distributed by the

Cantor set. Curve 2 represents the ensemble of three units of the

same type, Curve 3 – 10 units. Curve 4 corresponds to 1000

units in ensemble. The latter exhibits the power-law behavior

IðtÞ � tln 2= ln 3.
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ergodic assumption – the number of relaxation

acts on a microscopic level for a cooperative do-

main). The assumption of geometrical self-simi-

larity of the considered system suggests that this

number is

N ¼ G
R
R0

� �dG

: ð5:12Þ

Here, dG is a spatial fractal dimension of the point

set where relaxing units are interacting with the

surroundings. R is the size of a sample volume

section where movement of one relaxing unit oc-
curs. R0 is the cutoff size of the scaling in the space

or the size of the cooperative domain. G is a geo-

metrical coefficient about unity, which depends on

the shape of the system heterogeneity. For exam-

ple, the well-known two-dimensional recurrent

fractal Sierpinski carpet has dG ¼ lnð8Þ= lnð3Þ �
1:89, G ¼

ffiffiffi
3

p
=4 � 0:43 [55].

The relaxation process can be accompanied by
a diffusion act. Thereby, the mean relaxation time

for such kinds of disordered systems is the time

during which the relaxing microscopic structural

unit would move a distance R. The Einstein–

Smoluchowski theory [110,111] gives the relation-

ship between s and R as

R2 ¼ 2dEDs; ð5:13Þ

where D is the diffusion coefficient and dE is the

Euclidean dimension. Thus, combining the rela-
tionships (5.10)–(5.13) one can get the relationship

between the exponent a and the mean relaxation

time in the form

a ¼ dG
2

lnðsxsÞ
lnðs=s0Þ

; ð5:14Þ

where xs ¼ 2dEG2=dGD=R2
0 is the characteristic fre-

quency of the diffusion process. This equation
establishes the relationship between the CC expo-

nent a, the relaxation time s, the geometrical

properties (fractal dimension dG), and the diffusion

coefficient (through xs).

5.2. Polymer–water mixtures

The first mention of the aðsÞ dependencies was
in the experimental work [89]. The dielectric re-

laxation data of the water in the mixtures with

seven water-soluble polymers were presented

there. It was found that in all these solutions re-

laxation of water obeys the CC law, while the bulk

water exhibits the well-known Debye-like pattern

[112,113]. Another observation was that a is de-
pendent not only on the concentration of solute

but also on the hydrophilic (or hydrophobic)

properties of the polymer. The seven polymers

are: poly(vinylpyrrolidone) (PVP; weight average

molecular weight (Mw)¼ 10,000), poly(ethylene

glycol) (PEG; Mw¼ 8000), poly(ethylene imine)

(PEI; Mw¼ 500,000), poly(acrylic acid) (PAA;

Mw¼ 5000), poly(vinyl methyl ether) (PVME;
Mw¼ 90,000), poly(allylamine) (PAlA; Mw¼
10,000), and poly(vinyl alcohol) (PVA; Mw¼
77,000). These polymers were mixed with different

ratios (up to 50% of polymer in solution) to water

and measured at a constant room temperature

(25 �C) [89].
Here we would like to sketch a recent applica-

tion [114] of model (5.14) to these systems. In Fig.
20 the experimental dependencies of CC exponent

a versus s together with the fitting curve are pre-

sented. The values of the fitting parameters are in

Table 3.

Fig. 20. CC exponent a versus relaxation time s for PVA (d),

PAlA (N), PAA (j), PEI (r), PEG (s), PVME (M) and PVP

(�) samples. The curves correspond to the model described in

Section 5. The full symbols correspond to the hydrophilic

polymers and the open symbols correspond to the hydrophobic

samples.
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It is well known [112,113] that the macroscopic
dielectric relaxation time of the bulk water (8.27 ps

at 25 �C) is about 10 times greater than the mi-

croscopic relaxation time of a single water mole-

cule, which is about one hydrogen bond lifetime

[115–118] (about 0.7 ps). This fact follows from

the bulk water associative structure when the

macroscopic relaxation time reflects the coopera-

tive relaxation process in some cluster of water
molecules.

In the framework of the model presented above

the microscopic relaxation time of water molecule

is equal to the cutoff time of the scaling in time

domain s0. For the most hydrophilic polymer,

PVA, the strong interaction between the polymer

and the water molecule results in the greatest value

of microscopic relaxation time s0, only 10% less
than the macroscopic relaxation time of the bulk

water. The most hydrophobic polymer, PVP, has

the smallest value of a single water molecule mi-

croscopic relaxation time, which is almost equal to

the microscopic relaxation time of bulk water (see

Table 3). Therefore, weakening the hydrophilic

properties (or intensifying the hydrophobic prop-

erties) results in a decreasing of interaction be-
tween the water and the polymer and consequently

in the decrease of s0.
The interaction between the water and the

polymer occurs in the vicinity of the polymer

chains and only the water molecules situated in

this interface are affected by the interaction. The

space fractal dimension dG in this case is the di-

mension of the macromolecule chain. If a polymer
chain is stretched as a line, then its dimension is 1.

In any other conformation, the wrinkled polymer
chain has a larger space fractal dimension, which

falls into the interval 1 < dG < 2. Thus, it is pos-

sible to argue that the value of the fractal dimen-

sion is a measure of polymer chain meandering.

Straighter (probably more rigid) polymer chains

have dG values close to 1. More wrinkled polymer

(probably more flexible) chains have dG values

close to 2 (see Table 3).
The presence of a polymer in the water affects

not only the relaxation but the diffusion of the

solvent as well. For an estimation of the diffusion

coefficient, we can use the following expression:

D ffi xsR2
0

2dE
; ð5:15Þ

which is directly derived from the definition of the

characteristic frequency xs. It was assumed in this
last expression that the geometrical factor G ¼ 1.

In our case the scaling cutoff size in space is equal

to the diameter of a water molecule R0 � 3 �AA [119].

The Euclidean dimension of the space where dif-

fusion occurs is the nearest integer number greater

than the fractal dimension. Thus, dE ¼ 2. The re-

sults of this estimation are in Table 3. The diffu-

sion coefficient for the bulk water [119] at 25 �C is
2:57� 10�9 m2 s�1. The presence of a polymer in

the water prevents clusterization of water and re-

lieves the diffusion. However, the strong interac-

tion between polymer and water for hydrophilic

samples slows down the diffusion. The competition

of these two effects leads to the clear tendency of

the diffusion coefficient to increase with an increase

of hydrophobicity (see Table 3).

Table 3

The space fractional dimension dG, the cutoff time of the scaling in the time domain s0, the characteristic frequency xs and estimated

self-diffusion coefficient for the polymer water mixturesa

Sample dG s0 (ps) xs � 10�11 (Hz) D� 109 (m2 s�1)

PVA 1:56 0:09 7:18 0:74 1:47 0:21 3.31

PAlA 1.43 6.46 1.74 3.92

PAA 1:12 0:17 6:34 0:83 2:08 0:68 4.68

PEI 1:33 0:02 4:89 0:45 2:67 0:40 6.01

PEG 1:54 0:04 4:45 0:74 2:78 0:63 6.26

PVME 1:38 0:10 3:58 1:23 4:24 2:47 9.54

PVP 1:00 0:01 0:79 0:11 127 34 286

a For the sample PAlA there are only three experimental points. For this reason it is impossible to determine the mean square

deviation value and consequently the confidence intervals for the fitting parameters.
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Note that the polymer affects only water mole-

cules situated in the vicinity of the polymer chains.

Thus, the estimated diffusion coefficient corre-

sponds only to these water molecules and is not

dependent on the polymer concentration. The av-

eraged self-diffusion coefficient estimated for the
entire polymer–water mixture should be different

depending on the polymer concentration.

5.3. Microcomposite material

Another example of an application of Eq. (5.14)

is on microcomposite polymer material. We have

performed dielectric measurements of the glass
transition relaxation process in a nylon 6,6 quen-

ched sample in amorphous (QN), crystalline nylon

6,6 sample (CN) and microcomposite sample

(MCN), which is the same crystalline nylon 6,6 but

with incorporated kevlar fibers [120].

The quantitative analysis of the dielectric spec-

tra of the glass-transition process was carried out

by fitting the isothermal dielectric loss data ac-
cording to the HN law (1.10). It was found from

the fitting that b ¼ 1 for the glass-transition pro-

cess in all of the samples. The glass-transition re-

laxation process in these systems is due to the

motion of a polymer chain that is accompanied by

a diffusion act. In general, the diffusion of a

polymer chain is more complex than the Brownian

model for diffusion [121,122]. However, in all the
models the dependence of hR2i on time t is linear in

the time scales associated with a monomeric link

and in the time scale associated with the mobility

of the entire chain. For this particular example,

Eq. (5.13) describes the mobility of the polymer

groups in the microscopic levels, i.e. at the scale of

a monomeric link.

The experimental a versus s dependencies for
these samples, together with the fitting curves, are

shown in Fig. 21. Note that in contrast to the

previous example, these data are obtained at a

constant sample composition. In this case, varia-

tions of parameters a and s are induced by tem-

perature variation. As mentioned above, the

exponents a as well as the relaxation time s, are the
functions of different experimentally controlled
parameters. The same parameters can affect the

structure or the diffusion simultaneously. In par-

ticular, both a and s are functions of temperature.

Thus, the temperature dependence of the diffusion

coefficient in (5.13) should be considered. Let us

consider the temperature dependence of diffusion
coefficient D,

D ¼ D0KðT Þ; ð5:16Þ
where KðT Þ is a dimensionless function that rep-

resents temperature dependence of the diffusion

coefficient. D0 is the appropriate constant with the
dimension [m2 s�1]. An increase of the diffusion

coefficient with increasing temperature also signi-

fies an increase of the characteristic spatial scale R0

(cutoff size of the scaling in the space). Let us as-

sume that R2
0 is proportional to the diffusion co-

efficient D and obeys the Einstein Smoluchowski

theory

R2
0 ¼ 2dEDsmax; ð5:17Þ

where smax is the long-time limit of the scaling.

Thus, combining together (5.16) and (5.17) with

(5.11)–(5.13) we can obtain the relationship be-
tween the CC exponent a and relaxation time s in a

form similar to (5.14)

a ¼ dG
2

lnðsx0Þ
lnðs=s0Þ

ð5:18Þ

with substitution of xs by x0 ¼ G2=dG=smax. The

latter relationship shows that under assumption

Fig. 21. The dependence of a versus relaxation time s for QN

(�), CN (N) and MCN (r) samples. The curves correspond to

the model described in Section 5.
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(5.17) the temperature dependence of the diffusion

coefficient does not change the form of the a versus

s relationship.

The average length of a nylon 6,6 polymer chain

is about 50–100 lm (each polymer chain contains
about 105 groups while the length of a polymer

group rg is about 10 �AA). This length is comparable

to the thickness of a sample 120–140 lm [120].

Thus, the movement of the chains is most likely

occurring in the plane of the sample. This fact

correlates with the values of the space fractional

dimension dG. For all of the samples dG 2 ð1; 2Þ
(see Table 4). Thereby, the Euclidean dimension of
the space in which chain movement occurs is

dE ¼ 2.

Although there is no unambiguous data for

the mesoscale structure of the samples under

investigation at this time, nevertheless it is pos-

sible to estimate the order of magnitude of some

physically significant quantities from the cutoff

time s0 and characteristic frequency x0 values.
Despite the fact that x0 and xs have differ-

ent physical significance, for the estimation one

can neglect temperature dependence of the dif-

fusion coefficient and assume that R2
0 � 10�16 m2

(R0 is the cube root of the volume occupied by

one polymer chain), G � 1. Then, the self-diffu-

sion coefficient evaluated by expression (5.15)

falls into the interval 10�14 to 10�13 m2 s�1,
which is typical for such polymer materials [123–

125].

The cutoff time s0 is related to the size of the

cooperative domain lc by l2c ¼ 4Ds0. Thus, in the

two-dimensional case one can estimate the number

of polymer groups ng in the cooperative region as

ng ¼ l2c=r
2
g � 102, which is in fair agreement with

the results obtained in the paper [126].

One can also see from Table 4 that the presence

of either the crystalline phase or the kevlar fibers in

a sample leads to an increase of the cutoff time s0,
indicating a slowdown of the relaxation process.

Their presence also leads to an increase of the x0

value as well. This is a manifestation of a de-
creasing mobile polymer chain length.

6. Discussion

Generally speaking, through all the previous

sections we tried to present several recent appli-

cations of two non-Debye dielectric relaxation
models: the model relaxation induced by the per-

colation process (dynamic or static) and the model

of CC relaxation. These models describe the

properties of the phenomena discussed and pro-

vide some general information about the investi-

gated disordered materials.

The electric percolation phenomena in different

systems such as ionic microemulsions, porous sil-
icon, and porous glasses can actually be analyzed

in the framework of one universal approach based

on the idea of charge carrier transport through the

fractal network clusters. This model describes the

growth of the fractal pre-percolation clusters.

The other model describes CC relaxation in

polymer–water mixtures, microcomposite and

polymer material. The main idea of this model is
the interrupted fractal interaction between the

microscopic units and the surroundings. These two

models are quite general. It is shown above that

each model is applicable to different systems with

different charge carrier natures and different types

of interactions with surroundings.

Nevertheless, each model is applicable only to

one particular phenomenon and does not con-
sider any basic ideas of ‘‘strange kinetic’’ behav-

ior. Obviously, the ‘‘strange kinetic’’ is a very

wide class of phenomena, which cannot be cov-

ered by the limited number of models, and has

few specific features. Most famous among these

characteristics is the power-law (or stretched ex-

ponent) asymptotic with a fractional exponent for

the dipole correlation function in time domain or
dielectric permittivity in frequency domain (see

Eq. (1.10) and (1.12)–(1.14)). Another property of

Table 4

The space fractional dimension dG, the cutoff time of the scaling

in the time domain s0 and the characteristic frequency x0 for

polymer quenched (QN), crystalline (CN) and microcomposite

samples (MCN)

Sample dG s0 (ms) x0 (kHz)

QN 1:12 0:01 1:1 0:1 5:9 0:3

CN 1:20 0:05 5:8 4:4 9:7 1:9

MCN 1:04 0:02 1:5 0:4 8:1 0:7
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the ‘‘strange kinetic’’ is that this class of phe-

nomena is inherent to many-particle cooperative

systems. Such complex matter cannot be consid-

ered as a simple sum of elementary units but ra-

ther should be regarded as a whole system due to

the interactions between the elementary compo-
nents. In a wide sense the word ‘‘interaction’’

represents not only the interaction with some

kind of physical far-ranging field (say an elec-

tromagnetic field) but can also mean a geometri-

cal (or even a quantum) constraint, or other type

of coupling. Consequently, it should be interest-

ing and useful to find general origins to start, and

then one can derive a whole variety of ‘‘strange
kinetic’’ patterns.

Since ‘‘strange kinetic’’ is a property of mac-

roscopic many-particle systems it can be ana-

lyzed in terms of statistical mechanics. The basic

idea of statistical mechanics is the relaxation of

the perturbed system to the equilibrium state. In

general the distribution function qðp; q; tÞ of a

statistical ensemble depends on the generalized
coordinates q, momentum p and time t. How-

ever, in the equilibrium state it does not depend

explicitly on time [111,127–130] and obeys the

equation

o

ot
qðp; q; tÞ ¼ 0: ð6:1Þ

The evolution of the distribution function to the

equilibrium state is governed by the so-called

Liouville equation (evolution equation)

oqðp; q; tÞ
ot

¼ �iLqðp; q; tÞ; ð6:2Þ

where L is the Liouville operator. Thus, by

virtue of (6.2) the evolution operator L deter-

mines the dynamical properties of the statistical

system. The specific form of this operator is de-

pendent on the Hamiltonian function H [111,

127–130] as

Lg ¼ �ifH ; gg; ð6:3Þ
where fH ; gg are the Poisson brackets. In the

classical statistical mechanics

fH ; gg ¼
X
k

oH
oqk

og
opk

�
� oH
opk

og
oqk

�
: ð6:4Þ

For the quantum mechanics the functions H, g

become operators ĤH and ĝg, and fĤH ; ĝgg obtains

the commutator from fĤH ; ĝgg ¼ 2p=ihðĤHĝg � ĝgĤHÞ,
where h is the Plank constant.

Therefore, the consistent study of the many-
particle system dynamics (in particular the

‘‘strange kinetic’’) should start by establishing the

H and then solving the evolution equation (6.2).

Unfortunately, examples of such calculations are

very rare and valid for limited classes of model

systems (like Ising model) since extended calcula-

tions. In particular, to the best of our knowledge,

the relaxation patterns (1.10) and (1.12)–(1.14) still
are not being derived this way.

In this section, we consider the problem from

the opposite side. We will assume that (1.12)–

(1.14) are given and try to guess what statistical

properties leads to the ‘‘strange kinetic’’ behavior.

Let us first examine the equilibrium state (6.1). The

formal solution of (6.1) gives

qðp; q; tÞ ¼ const: ð6:5Þ
Recently the new concept of fractional time

evolution was introduced [93]. In addition to the

usual equilibrium state (6.5), this concept leads to

the possibility of the existence of an equilibrium

state with power-law long-time behavior. In this

case the infinitesimal generator of time evolution is
proportional to the fractional time derivative op-

erator 0Dt
t (5.5) [93]. Obviously, the derivation

order t should be dependent on the properties of

the cooperative system, although there is no clear

understanding for the time being how t depends

on these properties.

Nevertheless, let us call the ‘‘fractional equilib-

rium state’’ the state of the statistical system that
obeys the following:

0Dt
tqðp; q; tÞ ¼ 0: ð6:6Þ

We will discuss this state in relation to the recent

approaches of the anomalous diffusion theory [27].

It is well known [111,127–129] that by virtue of the

divergent form of Poisson brackets (6.4) the evo-

lution of the distribution function qðp; q; tÞ can be
regarded as the flow of a fluid in the phase space.

In this interpretation the Liouville equation (6.2)

becomes analogous to the continuity equation for

a fluid
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oq
ot
þ divðqvÞ ¼ 0; ð6:7Þ

where distribution function q is interpreted as the

density of a fluid and v is its local velocity. Let us

extend this analogy. The continuity equation ac-

companied by the relationship between the gradi-

ent of the fluid density and its flux (Darcy law for

the liquid flow or Fourier law for heat flow for
instance) [131,132]

gradðqÞ ¼ �#qv ð6:8Þ

gives

oq
ot
¼ #Dq; ð6:9Þ

where # is the appropriate constant that charac-

terizes permeability of the space and D is the La-

place differential operator. From a mathematical

point of view Eq. (6.9) is analogous to the diffusion
equation where q is regarded as the density of

diffusing particles and # is proportional to the

appropriate diffusion coefficient.

It is well known that the diffusion equation can

be obtained in two ways. The first is based on the

equation of continuity and the relationship be-

tween the fluid density gradient of its flux (Eqs.

(6.7)–(6.9)). The second way is the probabilistic
approach developed from the theory of Brownian

motion [27,110,111,127,128]. This approach does

not appeal to the local differential equations like

(6.7) and (6.8), but considers the probability of

jumps between the sites of some lattice. There is an

extension of this approach for the case when the

lengths of the jumps as well as the waiting times

between jumps are random. This is the so-called
continuous time random walk (CTRW) scheme

[27,133–135]. By applying different probability

distribution functions for waiting time and jump

length one can obtain different types of diffusion

patterns [27]. In particular, if the characteristic

waiting time diverges because of a long-tailed

waiting time probability distribution function

(proportional to t�ð1þtÞ), but the jump length
variance is still kept finite, then diffusion equation

(6.9) obtains a fractional derivation [27] instead of

the first derivation on time on its left-hand side

0Dt
tq ¼ #tDq: ð6:10Þ

Here the parameter #t has a physical meaning

similar to # in (6.9), but with different a physical

dimension. 2

Now let us reiterate that diffusion equation (6.9)

can be derived in two ways. Using a continuity
equation and using the Brownian motion ap-

proach. By analogy one can imply that Eq. (6.10),

a generalization of Eq. (6.9), can be derived not

only in the framework of the CTRW scheme but

also by using some analog of the continuity

equation as well. The difference between Eqs. (6.9)

and (6.10) is only in time derivation. Thus,

the analog of continuity equation (6.7) that cor-
responds to the anomalous diffusion equation

(6.10) is

0Dt
tqþ divðqvtÞ ¼ 0: ð6:11Þ

Let us call it the ‘‘anomalous continuity equation’’.

There are two main features that distinguish this

equation from (6.7). The first is that (6.11) be-

comes non-local in time by virtue of the convolu-
tion form of the fractional derivation operator 0Dt

t .

Second, in spite of the different physical dimension

[m s�t], the quantity vt has a physical meaning

similar to the local velocity v.
Now let us return back to the Liouville equa-

tion. It was already mentioned that this equation

can be regarded as a continuity equation. Thus,

there is a possibility to establish an evolution
equation not only in the usual form (6.2) but also

based on the anomalous continuity equation (6.11)

as well

0Dt
tqðp; q; tÞ ¼ �iLqðp; q; tÞ: ð6:12Þ

This equation implies an equilibrium state in the

(6.6) form.

Thus, the fractional equilibrium state (6.6) can
be considered a consequence of the anomalous

transport of phase points in the phase space that

results in the anomalous continuity equation

(6.11). Note that the usual form of evolution

equation (6.2) is a direct consequence of the

2 In the general case a term proportional to qðt ¼ 0Þ should be

added to the right-hand side of (6.10) but by choosing the

appropriate initial conditions it can be subtracted. Thus, we will

not discuss this term.
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canonical Hamiltonian form of microscopic

motion equations. Thus, the evolution of (6.12)

implies that the microscopic equations of motion

are not canonical. The actual form of these equa-

tions has not yet been investigated. However, there

is great suspicion that in this case dissipative effects
on the microscopic level become important.

If we assume factorization of time dependency

in the distribution function, then the formal solu-

tion of (6.6) is

qf ðp; q; tÞ ¼ qf ðp; q; sf Þ
t
sf

� �t�1

; ð6:13Þ

where tP sf , qf ðp; q; sf Þ and sf depend on the
initial conditions. Obviously, the assumption

about factorization of time dependency for the

distribution function is not universal. However,

this type of factorization is justified when the

equilibrium and non-equilibrium (in the ordinary

sense) parts of distribution function qðp; q; tÞ are

orthogonal to each other in the phase space

[130].
The interpretation of any distribution function

as a probability density function in the phase space

leads to the requirementZ Z
qðp; q; tÞ dpdq

N !h3N
¼ 1; ð6:14Þ

where 3N is the number of degrees of freedom.

This normalization is based on the uncertainty

relation that establishes the minimal phase cell as
dpkdqk P h. Substitution of the solution (6.13) in

(6.14) givesZ Z
qf ðp; q; tÞdpdq ¼

N
N !h3N

t
sf

� �t�1

¼ 1;

ð6:15Þ
where

N ¼
Z Z

qf ðp; q; sf Þdpdq

is a constant. Thus from (6.15) one can get

N !h3N

N
¼ t

sf

� �t�1

; ð6:16Þ

which for t < 1 indicates a decrease in the number

of degrees of degrees of freedom.

From one point of view, (6.16) can be inter-

preted as a manifestation of the non-canonical

nature of the microscopic motion equation and

supports the idea of an impact of dissipative effects

on the microscopic level (for time scale t < sf ).
From another point of view (6.16) can be related
to the ‘‘coarse graining’’ of the phase volume

minimal cells. The concept of fractional evolution

is the result of consequent acting of the averaging

operator [93]. Each acting of the averaging oper-

ator is equal to the loss of information regarding

the short-time mobility and is closely associated

with the renormalization approach ideas [136].

A simple example of this ‘‘coarse graining’’ is
that of two masses in the viscous media connected

by a spring. The spring here represents an inter-

action between the microscopic particles while

viscosity reflects the dissipative effects. Now let us

discuss the situation when one mass is exposed by

some mechanical perturbation with a wide spec-

trum (say the d-impulse of force). In the beginning

the motions of the masses are almost independent
of each other. The viscosity effect then leads to a

decay of the high-frequency modes of mobility and

the motions of masses become more and more

correlated. At the initial times, one should observe

the motion of two centers of gravity while at the

longer time interval it is enough to know the po-

sition of the joint center of gravity. Thus, the

‘‘coarse graining’’ effect leads to a reduction in the
number of degrees of freedom.

The reduction of degrees of freedom can also be

regarded as the transition from the non-correlated

state to the state with long-range space correla-

tions, and can be accompanied the phase transi-

tion. This is the reason the renormalization

approach was used for the first time to describe the

phase transition phenomena [111,128,136]. The
theory of the phase transitions investigates the de-

pendency of macroscopic physical quantities (like

sample magnetization or polarization vectors) on

the external parameter (like external fields or

temperature) values. The changes of the degrees of

freedom are the result of competition between

external perturbations (say temperature) and in-

ternal interactions.
In contrast to the phase transitions in the

fractional equilibrium state (6.6) the statistical
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system looses degrees of freedom during evolution

in time. The degrees of freedom, independent at

the short-time limit, become dependent later due

to the interactions (in the wide sense coupling,

constraint, etc.) and dissipative effects.

The distribution function for the fractional
equilibrium state (6.13) can be utilized to calculate

the of macroscopic dipole correlation function

(1.11). The statistical averaging designated h� � �i in
(1.11) is performed over the equilibrium ensemble

(in the usual sense) with a distribution function

that does not depend explicitly on time. If we re-

gard the evolution of the DCF as a fractional

equilibrium state (6.6), then by using properties of
statistical averaging and the Liouville operator

[129,130] we can transfer time dependence of the

dynamic variable MðtÞ to time dependence of the

distribution function qf ðp; q; tÞ. Thus, instead of

hMð0ÞMðtÞi in (1.11) we use hMð0ÞMð0Þif , where
subscript f means that statistical averaging was

performed with distribution function (6.13). In this

case one can get

/ðtÞ ffi hMð0ÞMðtÞihMð0ÞMð0Þi ¼
hMð0ÞMð0Þif
hMð0ÞMð0Þi

¼
R R

Mðp; q; 0ÞMðp; q; 0Þqf ðp; q; tÞdpdqR R
Mðp; q; 0ÞMðp; q; 0Þqðp; q; 0Þdpdq

� t
sf

� �t�1

; tP sf : ð6:17Þ

Thus, one can regard the power-law dependence of

relaxation function (1.13) as a result of the frac-

tional equilibrium state (6.6).

In order to understand the stretched expo-

nential behavior of DCF (1.12) let us discuss

Gibbs phase exponent gG ¼ � ln qðp; q; tÞ. This

quantity plays a special role in statistical me-
chanics and relates to the entropy of the system.

If Gibbs exponent obeys fractional evolution

equation

0Dm
tgG ¼ 0; ð6:18Þ

then the distribution function is

qgðp; q; tÞ ¼ qgðp; q; 0Þ exp
 
� t

sg

� �m�1
!
; ð6:19Þ

where qgðp; q; 0Þ and sg depend on the initial con-

ditions. A calculation analog to (6.17) shows that

this distribution function leads to the KWW de-

pendency of the DCF. Thus, in the framework of

the fractional time evolution concept the power-
law time dependence of the relaxation function

behavior (1.13) and the stretched exponential re-

laxation (1.12) can be regarded as two different

realizations: the fractal equilibrium state of the

distribution function and the fractal evolution of

Gibbs phase exponent.

A similar ideology can also be the basis of the

relaxation pattern (1.14) when these two different
types of fractal evolution simultaneously coexist

for two subspaces ðpf ; qf Þ and ðpg; qgÞ of the total

statistical system phase space ðp; qÞ. In this case the

total distribution function qf gðp; q; tÞ is the prod-

uct of two statistically independent distribution

functions qf ðpf ; qf ; tÞ andqgðpg; qg; tÞ:

qf gðp; q; tÞ ¼ qgðpg; qg; 0Þqf ðpf ; qf ; sf Þ
t
sf

� �t�1

� exp

 
� t

sg

� �m�1
!
; ð6:20Þ

that can be related to the relaxation pattern (1.14).

The relaxation law (6.20) has been observed in

the case of dynamic percolation in ionic micro-

emulsions (see Section 2). Below the percolation

threshold, the relaxation process is provided by

two types of mobility: mobility of the pre-perco-

lation clusters and mobility of the charge carriers
inside these clusters. The first type of mobility is

governed by the power law (1.13) while the second

type exhibits stretched exponential behavior (1.12)

[54]. Thus, there are two subspaces of degrees of

freedom: the first is related to the mobility of pre-

percolation clusters as a whole and the second

reflects the mobility inside the clusters. Ap-

proaching the percolation threshold pre-percola-
tion clusters grow and become an infinite (or very

large for a real finite size system) percolation

cluster at the threshold. At this point mobility of

the cluster is impossible, as first subspace of de-

grees of freedom disappear and the relaxation

function obtains the stretched exponential pattern

(1.12). Far from the percolation, one finds the

opposite situation. The pre-percolation clusters are
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small, second subspace degrees of freedom are not

yet developed and the relaxation function obeys

the power law (1.13).

Obviously, the arguments represented in this

section are not rigorous. They are the hints rather

than the proofs. Nevertheless, we discuss them
here for the following reasons. We have exposed

quite a few different models of ‘‘strange kinetic’’

phenomena and we have presented a few of them

above (see Sections 2–5). However, in our opinion,

there is no unified ideology yet that can explain the

backgrounds of the ‘‘strange kinetics’’. Thus, we

have tried not to answer, but rather raise questions

and present new points of view on the problem.
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