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Free Volume Concept in Application to Folding Kinetics of Random Heteropolymers
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The presented work introduces a new model of folding kinetics of random heteropolymers, which is based on
the free volume concept. This model reproduces the well-known saddlelike temperature dependence of folding
time. The presented model is discussed in comparison to the random energy model which is widely employed
for describing kinetics of this type and in relation to Levinthal’'s paradox.

I. Introduction

Folding is a process of considerable interest which is
important for many scientific and practical reaséii$is process
is intensively discussed in scientific literature in relation to
experimenta > investigations and theoretical modelifig2 In

this regard, perhaps the most important quantity which describes

the folding process is the reaction rédteor the corresponding
folding time 7+ = 1/k:. At lower temperatures, similar to the

vast majority of chemical reactions, the temperature dependenc

of folding reaction ratdg obey$12.13 Arrhenius law which for
the folding time reads as
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whereE, is the activation energy of the process amds the
fastest relaxation time corresponding to the lifit> o (it is
assumed here and below that Boltzmann condtant 1 and
is dimensionless). Arrhenius law determines a decreasg of
with temperature increase. However, in the case of folding,

further growth ofT leads to a deviation from the Arrhenius law,
and at a certaifqp folding time, 7y reaches a minimal value
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temperature, widely to referred as “parabolic” dependence
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whereEy is the energy of the local minimum state. The key
result of the original REM is that at a certain temperaflye
2/+/2InQ the entropy of the system vanishes. Thus, below this
femperature the system is frozen. This REM transition is widely

®3)

discussed in relation to the so-called heteropolymer freezing,
which is the transition from the phase where many conforma-
tions dominate at equilibrium to one in which only a few
conformations are statistically relevant. The REM ideology
provided substantial progress in understanding of folding
kinetics. However, there are many observations that are not
easily understood in the original REM paradight® For
example, it is clear that the “parabolic” dependence in (3) does
not exhibit the Arrhenius limit in (1) at lower temperatures. To
resolve this contradiction, one can rfoté13that belowT, the
“parabolic” formula is not valid due to the REM freezing
transition. Thus, one obtains abovie a “parabolic” like
temperature dependence miwhile belowT., using the mean
field replica theory? one derives an Arrehenius behavior of

and its temperature dependence changes to the oppositdolding time as follows

tendency10.12.13(see also Figure 1). It is widely held now that
this behavior is well-explained in the framework of the so-called
random energy model (REM). This model was initially intro-
duced by Derrid¥15to describe statistical properties of spin

glasses. The essential idea of this model is the assumption that

the density of energy state¥E) is given by the Gaussian

distribution
Q 4
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whereQ is the normalization factoE is a mean value ang?
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|I"I(T—O) = —T (f ?C) for T > Tc (48.)
Ty E*
In(T—O) =T forT>T, (4b)

whereE; = E — = v/2InQ is the energy correspondent to the
REM “freezing” transition afl.. Nevertheless, the basic REM
assumption-statistical independence of the energies of states
over disordef-seems violated for many cases, for example for
the proteins, and therefore, REM applicability is question&ble.
Nevertheless the generalizations of REM are still actively

is the standard variance of the energy for the REM Gaussiandiscussetf in relation to the folding kinetics and to the

energy distribution. Bryngelson and Wolyness in their pioneer-
ing work® applied REM to the folding kinetics and later with
coauthoréderived the temperature dependence off)rif the
form of a second order polynomial with respect to the reciprocal
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interpretation of computer experiments which are simulating
folding kinetics of random amino acid sequenées.

The nonmonotonic temperature dependency of folding time
is also discussed from the point of view of a modified transition
state theory. In this case, as it shown by Oliveberg, Tan, and
Fersht318the changes in heat capacity for a biopolymer with a
hydrophobic core may also lead to non-Arrhenius folding
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“native”, neighbors to minimize the total energy of the
conformation. Let us calp, the probability to break a bond
between the two neighboring beads gmdthe probability to
find a native neighbor for a certain bond. Thus, if the chain
containsN beads and if each bead in the chain lgasonds
then the total probabilityy to convert this chain in the native
state is

P = (Pgpy )" (6)

wherepy is the probability to let alty bonds for every bead be
able to search for the native connection apd\ is the
probability to find the native contacts for aN bonds. Let us
assume that to break one bond between two beads one need to
spend the energl,. This means that the probabilify, obeys

the law
E,
Po = €XQ (1)

Next, let us discuss the probabilipy. Let us suppose that this
probability obeys the free volume concept. However, in contrast
to the original free volume concept eq 5, let us assume that this
probability is related not to the actual volume occupied by a
chain but to the relevant configuration volume in the space of
chain conformations. Thus

P = exp(—z—f) ®)

wherewy is the number of chain conformations per bond and
wy is the corresponding free volume in the configuration space.
This relationship simply express the idea that the probability to
find the “native” contact is bigger for greater values wf.
Obviously one should regard, as a constant which is equal
1/T to wo = Q¢/(gN), gN is total number of bonds to arrange and
Figure 1. Arrhenius plot presenting the dependencies ofjn(s Qo= gV is the total size of the configuration volume. If a bond
reciprocal temperature. The symbols represent original data from ref is connected to a neighbor, not necessary “native”, then it is
13 (panel A for sequence 1, panel B for sequence 4, and panel C forexcluded from the folding kinetics, and consequently, it does
sequence 8). The dash-dotted lines correspond to model 4. The_ full not occupy any space in the configurational volume. Thus, the
lines correspond to model 12. The parameters of both models are listedf oo configuration volume per bond can be evaluatedas
in Table 1. Qu/Ng, whereNy is the number of disconnected bonds which
kinetics. The reason for this is apparent negative activation are searching for the “native” connection. To calculbite let
enthalpy occurring in the case when the heat capacities of theys recall eq 7, which states that every bond has the erigygy

transition state and denatured state are diffetéht. Thus, the number of disconnected bond obeys the Boltzmann
The presented work is an attempt to describe folding kinetics |aw

of heteropolymers from an alternative point of view which is

based on the free volume concept. This concept was elaborated B

by Fox and Flory to describe dynamic transition in poly- Ny = aN exp(—?) ©)
styrenel® 21 The main idea of this concept is that the probability

to move a polymer molecule segment is related to the free and

volume available in a system. Later the concept of free volume

was applied to the wider class of disordered solids by Dodfttle 0= exr{E)) (10)
and Turnbull and Cohé&hwho suggested a similar relationship f 0 T

between the viscosity, the self-diffusion coefficienD, and . .
the free volume of an amorphous solid in the form Combining together eqgs 6, 7, 8, and 10, one finds that the total

probability to convert a whole chain in the native state is

Yo
ny~—-—InD~—— (5) E
Ui p; = ex —gb —gNex —Tb (11)
whereuy is the volume of a molecule (a mobile unit) ands
the free volume per molecule (per mobile unit). It is important to note here that besides assumptions 7 and 8
used to derive eq 11, it was implicitly assumed that all the
Il. The Model constituents of the macromolecular chain are equal; i.e., all of

The folded conformation of a macromolecule is a state where them have the same number of bonds and all the bonds have
all the beads in the chain are connected to the proper, so-calledhe same bonding energy. However, this cannot be the case for
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TABLE 1: Parameters of Models 4 and 12 Together with
the Reducedy? Values

model presented by eq 4 model presented by eq 12

2

seq Intg E BEx UT. 2 Inte, B q b4
1 420 -592 1.19 860 0.077—1.18 0.49 3.36 0.010
4 6.10 —6.32 099 8.04 0.016 184 0.50 2.73 0.008
8 3.04 —-568 1.24 8.60 0.083—2.14 0.49 3.40 0.006

2The original papé# reports a value of Inp = 3.4 for sequence 8.
However this value is not absolutely fitted to the data. Most probably
this value was misprinted. Substitution ofdn= 3.04 gives reasonable
agreement with the data as presented in Figure 1.
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roughly the same energy to break one bond between the beads
in the macromolecule chain. Thus, the only parameter which
affects the shape of the folding time temperature dependency
is the number of bonds per beadUsing this parameter one
can estimate the number of conta@<etween the beads in
the native conformation. Actually, in wotkthe folding dynamic
was simulated with a three-dimensional lattice model. Thus, the
single bead can establish a maximum of four contacts to the
neighbors (six bonds per particle where two of them are
permanent connections in a macromolecule chain). T@us,
gN/4 which forN = 27 andg from Table 1 give<C = 22.7 for
sequence 1C = 18.4 for sequence 4, afti= 22.9 for sequence

real heteropolymers. Thus, let us take this fact into account and8. These estimated values are in fair agreement witCtvalues

redefine thate, andq are the averaged energy of a bond and

obtained directly from simulation€ = 22, C = 18 andC =

the averaged number of bonds per bead, which is not necessarg1 for sequences 1, 4, and 8, respectivelly (see Table 1 in ref

an integer. Thus, recalling the relationship~ 1/p; one can

get the final expression
LANINC1= E,
|n(l_—0) T + QN EX[{ ?

Ill. Comparison with Simulation Data

12)

In the presented paper we are going to utilize the simulation
data borrowed from the previous papédn this papel® 10

13).

From eq 12 one can easily calculate the minimum in the
folding time temperature dependency and find the so-caligd
corresponding to the fastest folding time in the form

E

opt — InN (14)

which givesTop 2 0.15 for all analyzed sequences. Thus, with

random amino acid sequences were investigated, however, onlyeq 14, one can expect a logarithmic dependency of invijse
three of them were analyzed in the frameworks of eq 4. These on the sequence length.
are sequences 1, 4, and 8 (see Figure 1 and Figure 9 in ref 13). Substitution of eq 14 into eq 12 gives the fastest folding time

In this case for model 4 the original fitting parameters from
previous work? (see Figure 9 in ref 13) were used, while for
model 12 the fitting procedure was performed (see Table 1).

To establish a quantitative criteria of fitting goodness, one
can usé* the reduced,? value

1 m

= v — fi)2 (13)
m—1&

wheremis the number of points to fit,is number of adjustable
parameters in a fitting modey; are values of a given function
andf; are correspondent values of the fitting function. For all
analyzed sequences) = 16 (see ref 13). Model 4 has four
adjustable parameters: g, E., E* and 1/T.. Since the number
of residues is fixedN = 27 (see ref 13), model 12 has only
three adjustable parameters: 4§ Ep, andq.

IV. Results and Discussion

Trast = To(EN)’ (15)
where ex= 2.718 is the base of the natural logarithm. Equation
15 represents a so-called algebraic scaling for folding times
discussed earliéf?®33 It can be derived from the idea of
Thirumalaf®—30 that 71,5t should have an approximate power-
law dependence ol as in the case of the time scale for
subdivision in subspace of compact structures. Similar depend-
encies have also been discussed based on phenomenological
analysis of simulation results and experiential daf#: 33

It is interesting to discuss eq 15 in relationship to the so-
called Levinthal paradox. This paradox was raised for the first
time by Cyrus Levinthal who mention&dthe contradiction
between the astronomically large number of different possible
conformationsQ, and the quite fast folding time of real
macromolecules and biopolymers. Actually, if one implies that
a macromolecule reaches the native conformations by random

As one can see from Figure 1, model 4 reasonably fits the search over the entire configuration sp&2e = g and tests
data at the low-temperature region where the Arrhenius term one conformation for timep, then one immediately obtains that
works, however, at the high-temperature region where the folding the time exponentially grows with length of a macro-

“parabolic” REM term was applied, this model exhibits
significant deviation from the simulation data. In contrast, model

moleculer; = 7oqN. There are many approaches to resolve this
contradiction including the idea of so-called “funnels” of the

12 fits the data over the whole temperature range. From Tableenergy landscape,a quite elegant consideration that the

1 one can see that valuesgffor model 12 are about 1 order

processes uses to convert a correct bond into an incorrect one

of magnitude less than those for model 4. This clearly indicates and to convert an incorrect bond into a correct one may have
that model 12 is more relevant to the data presented in ref 13different probabilitie$® the idea of nucleation mechanism
than the model 4. Regarding model 12, note that the first time leading to the so-called exponential scaling of folding tirffes,

it was introduced to describe the dielectric relaxation of water
molecules in a confined geomettyand later was proved for
other system3327This affirms the general importance of model

12 and shows that free volume arguments may be relevant not

only for the actual volume of a system but for the configurational
space as well.
From Table 1, one can observe that valuegpfor model

the considerations about cooperative (all-or-none) character of
folding,® and even the claims that it has never been a
paradox940

In this regard, eq 15 suggests another point of view on the
Levinthal's paradox based on the free volume concept and shows
that the fastest folding time may have a power law dependency
on N, which is much slower than the exponential growth

12 for all the analyzed random amino acid sequences are almostmplemented by the random search. The key heuristic idea here
the same. This means that for all sequences one needs to spenid since the total configuration space is constant the temperature
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increase leads to a decrease of relevant free configuration

volume as presented by eq 10.
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