Cole—Davidson dielectric relaxation as a self-similar relaxation process
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An effort has been undertaken to understand the nature of one type of non-exponential
relaxation, namely Cole—Davidson relaxation. Toward this end, a model of relaxation as a self-
similar process is proposed. An equation containing operators of fractional integration and
differentiation is obtained and solved, which the relaxation function obeys in this cas&99®
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INTRODUCTION assume that the number of different relaxing subsystems
) ) L making up the macroscopic system is infinite since in this

Problems associated with relaxation in insulators not5se the TRD functions are continuous and do not have nar-

obeying an exponential law have a long history. At presentyq,; heakd which could be interpreted as a manifestation of

in connection with significant extensmns.of 'the temporal a”dseparate subsystems. Therefore, in our opinion, the applica-

frequency ranges of the measureméatsignificant amount o of the TRD concept for such systems is invalid. Besides,

of experimental data has been accumulated confirming thg,o Trp concept does not allow one to clarify the physical

existence of non-exponential relaxation processes, and se¥xiure of the parametessand v entering into formulagl)—

eral empirical expressions have been proposed to descritzg), which is another indication of its incompleteness.

them. In most cases these expressions are written in the fre-" 1o present paper attempts to understand the possible

quency domain. mechanism of the appearance of one of these types of relax-

From the theoretical point of view, these dependence§ion namely Cole—Davidson relaxation, with the help of a
represent an attempt to understand the nature of these pryodel of a self-similar relaxation process.

cesses, on the conceptual basis of the temporal relaxation present, an effort is already undenfay understand
distribution (TRD), when the normalized macroscopic relax- the nature of non-exponential relaxation, based on the hy-

ation functionf(t) is represented as a sum of exponentialyoesis of a self-similar relaxation process, but it is re-

functions with the appropriate amplitudes and relaxationgyricted to a consideration of processes describable in the

times. o _frequency domain by the Cole—Cole expression.
Such an approach to the description of non-exponential e present paper attempts to answer the following
relaxation is obviously based on the assumption that the r&juestions.

laxing macroscopic system consists of the appropriate num- 1) What physical process can lead to the appearance of

ber of subsystems, each of which relaxes with its own relaxhon-exponential relaxation of Cole—Davidson type and in

ation time. Without a doubt, this assumption may be valid,\hat substances can such a process by detected?
for many systems, but it is equally true that such a partition-  5) \what is the explicit form of the equation for the nor-
ing into subsystems has a real physical meaning only wheg,,jized macroscopic relaxation functiétt) in this case?

the number of subsystems is finite and comparatively small. 3) What is the meaning of the parameteentering into
As is well known; three expressions for the complex {ho cole—Davidson expression?

susceptibility allow one to describe a wide range of experi-
mental data. These are the Cole—Cole function

X 1. EQUATION OF SELF-SIMILAR RELAXATION
0

X('w):1+(iw/wp)5’ (1) Before embarking upon a consideration of the model of
self-similar relaxation, let us make a few remarks.
First, we agree that we will consider those physical sys-
Xo tems in which relaxation on the macroscopic level is defined
2 as relaxation of the elementary components of this system on
the microlevel.
and the Gavril'yak—Negami function Second, following Frblich® we assume as a first ap-
proximation that there is no indirect interaction at the mi-
crolevel between the elementary components of the physical
system. Relaxation proceeds as a result of the interaction of
Here w is the frequencyw, is the frequency of the peak of the separate elements of this system with a thermostat.
the dielectric losses, and and v are parameters where In other words, applied to dielectric relaxation this
0<e andv<1. means that the relaxation processes of individual electric di-
If, as is usually done, we apply the TRD concept topoles do not affect each other. In addition, we assume that all
explain these functional forms, then it becomes necessary telementary components of such a physical system find them-

the Cole—Davidson function

X(iw)zm,

. Xo
X('w)ZW- )
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selves under the same conditions. Then the equations de- Suppose now that at certain times the system is found in
scribing relaxation of the system on the macrolevel will co-the equilibrium state. In other words, at these ting3$) is
incide with the equations describing relaxation of theequal to zero and not td(0) and instead of the non-
individual electric dipoles on the microlevel. Therefore, in equilibrium picture(see Fig. 1bthe system is found in the
our discussion of the model of self-similar relaxation, from equilibrium state(see Fig. 1a The reason for this may be,
here on, we will use the equation for the total dipole momenfor example, thermal fluctuations of the local fields in the
of the insulator, bearing in mind that the motion of the indi- insulator leading to screening of the external field.
vidual elementary dipoles from which the insulator is com- In addition, suppose that the times whe(it) =f(0) are
posed in fact possess a self-similar character. distributed over a self-similaifractal) set. The phrase “self-
Let us consider the ordinary equation of exponential re-ssimilar objectS” means that the objecs is invariant with
laxation, which can be written in the form respect to a scale transformati®@(iét) =bS(t), where the
quantities¢ and b define the fractal dimension of this set.

d Thus, for example, the fractal Cantor set is invariant with
exp( _Qot)ﬁ exp(Qot) (1) =0. ) respect to the transformati@{(1/3)t) =2S(t) and its fractal
dimension is In(2)/In(3).
Heret is time, f(t) is the normalized macroscopic relaxation In other words, at times that coincide with the points of
function of some physical quantity, aifd, is the relaxation some self-similar set;(t) =f(0), and atimes that coincide
rate constant. with the vacancies of this s&(t)=0. Thus, integrating the

For the case of dielectric relaxatidfi{t)=P(t)/P(0), function G(t) and averaging over the various realizations of
whereP(t) is the total dipole moment of the insulator, and the self-similar set, one obtafhs
Qg is a constant describing the interaction of the macro- 1 P
scopic dipole with the thermostiin particular, Eq.(4) de- D G(H=ADT1(0)]. ®)
scribes the behavior of systems whose relaxation on the mi- HereA is a constant determined by the structure of the
crolevel can be described by the model of a deep potentidtactal set on whiclG(t) is distributed,v is the dimension of
well with two equilibrium positions (the Frdilich  this set (B<v<1), andD " is the Riemann—Liouville frac-
relaxatoy.>®=% In this model the relaxation process beginstional integration operator, defin¥d* as
after a energy difference is created in the two equilibrium .
positions with the help of an external fieldee Fig. 1 It is D_”[f(t)]=(1/F(v))J' (t—7)" Y (7r)dr,
well known that the model of the Hntich relaxator is valid 0
for a wide class of insulators, and works already exist whos - :
authors have tried to modify this model using models Of@vherel“(v) 's the gamma function.
hopping charge transport and ionic conductiigee, e.g.,
Refs. 1 and @monographg Ref. 4 (review), and Ref. 7(a
papej] to describe non-exponential relaxation. However, in
the final tally all such efforts are based on the TRD concept. D"[G(t)]=0. (7)
In the present work, therefore, we have modified the model
of the Frdilich relaxator, departing from other consider-

Employing the properties of the fractional integration
and differentiation operators, we can rewrite E@). in the
orm

Here D” is the fractional differentiation operator,
defined ! as

ations.
Toward this end, consider the function , d [t -,
G(t) =expQg)f(D). If f(t) solves Eq(4), thenG(t)=f(0) D)=/ A=v)g; fo(t—ﬂ f(r)dr.

is a constant and
In other words, if we are considering relaxation for

which the interaction with the external field is of a discon-
gt 6(0=0. () tinuous self-similar nature, then E@5) for the function
G(t) must be replaced by Eq7).
Taking the nature of(t) into account, the equation for
the relaxation functiorf(t) can be written in the form

U a [ U b exp(— Qot)D[exp(Qot)f(t)]=0 (8a)
\ ) l } or invoking the operator relatiofsee the Appendix

| i exp(— QuD' ?)D%exp(QuD~#)=(D®+ Qe)?,
\/\\/ O<e=sl, aseg,

we can give it the more elegant form
r,9 Lo (D*+ Q)" [f(t)]=0. (8b)

H 1—&
FIG. 1. Dependence of the potential enetgyof a dielectric dipole on the Hesre and Eselow’ expressmns_ of the form eXpXUD ) and .
rotation angle ¢ or the displacementr of the ion (electron. a,  (D°+{e)®® are understood in the customary sense as series

b—equilibrium positions, a—in an external electric field. of fractional integration and differentiation operators.
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2. COMPLEX SUSCEPTIBILITY OF SYSTEMS DESCRIBED
BY THE GENERALIZED RELAXATION EQUATION

As usual, to find the complex susceptibilig(i w) of a

system obeying the equation of self-similar relaxation, wePound on self-similarity,
consider the response of this system to a harmonic perturb

tion Bexp(ot). We seek the solution in the form
f(t) = x(i w)exp(wt). Then, substituting in Eq8b), we ob-
tain

(D+Q0)"[x(iw)expiwt)]=B expi wt). (9

between the external field and the relaxing system holds over
the entire time interval from zero to infinity. However, in
real physical systems there always exist a lower and an upper
defined, for example, by the fre-

guency 1f of the interaction of the relaxing system with the

“thermostat” and the time of formul&l2). Self-similarity is
possible, therefore, only at times greater than the lower
bound(t>17).

As is clear from the above, it is not necessary to use the
TRD concept, mentioned at the beginning of this paper, to

Taking into account the exceedingly precise nature of theélescribe non-exponential relaxation. We propose as an alter-
operator P1+Q)” and assuming that the perturbation native the concept of self-similar relaxation. The main dif-

Bexp(wt) is switched on adiabatically at the tinhe> — o,

ference between this process and the usual relaxation process

we arrive at the following expression for the complex sus-is that here the interaction with the external field causing the

ceptibility:

Xo

X(iw)Zm . (10)

relaxation is of a discontinuous nature and that the times
when this interaction exists are distributed over some self-
similar (fracta) set.

We may take the modified Fntich relaxator as a pos-

To obtain this result, we made use of the fact that, for thesible physical model of such a process, in which the system

case in which the interaction in Eq®) is switched on adia-
batically, the fractional derivative®” must be replaced by
the alternative fornD” , We also made use of the result

D? _[expt)]=(iw)"expiwt),

where

d rt
D” _ [f(t)]=(1/T(1—- v))& jﬁx(t— ) "f(7)d7.

It is easy to see that expressi@0) coincides with em-
pirical equation(2) describing Cole—Davidson relaxation in
the frequency domain.

3. SOLUTION OF THE GENERALIZED RELAXATION
EQUATION

The solution of Eq.8b), equivalently Eq.(8a), can be
obtained with the help of the Laplace transform.

Indeed, if we define the Laplace transfofip) of the
function f(t) as

F(p)= f:fmexp(—pt)dt,

then, applying the Laplace transform to E§a) and invok-
ing the properties of this transformatiGhye obtain the fol-
lowing expression for the Laplace transformfdt):

C
F(p)=———. 11
(P)=5rag (11)
HereC is a constant determined by the initial conditions..
v—1
f(t)=C () exp(— Qot). (12

relaxes only at times that coincide with the points of some
fractal set and at these times the dependence of the potential
energy of the interactiot) of an individual electric dipole

on the rotation angle has the form shown in Fig. 1a,b and
at other times, as a result of screening of the external field by
the local fields inside the insulator, the dependencl ah

¢ has the form shown in Fig. 1a. Note that this version of the
dynamical Frdlich relaxator is applicable not only when the
variation of the total dipole moment of the insulator is due to
rotations of the elementary dipoles, but also when the poten-
tial energyU depends on the displacemeanbf the ions of

the crystal lattic&® (see Fig. 1

It is possible that such processes can be observed in
ferroelectrics, for which the deep-potential-well model with
two equilibrium positions is known to be applicabind that
experimental data exist confirming the presence in them of
non-exponential relaxation proces$és. It is also possible
that such processes play a role in relaxation in liquid and
plastic crystals.

It should be noted that when we averaged Ej.over
time by the method suggested in Ref. 8 we assumed that the
fractal set over which the average was taken is a statistical
fractal. In other words, the property of self-similarity is
manifested in such an object only for its mean characteris-
tics. Such are all actually existing fractal structures: the pe-
rimeters of coastlines, the shape of clouds, broken surfaces,
etc. (see, e.g., Ref. 13

Then the variation in time of the physical quantityis
described by Eq(8a), equivalently(8hb), whose solution is
the functionf(t), given by Eq.(12).

Thus, we can give the following answers to the questions
formulated at the beginning of this article.

1) The complex susceptibility described by the empirical

This function is the solution of the equation describing self-Cole—Davidson relation can be observed in systems to which

similar relaxation
As t—0, the functionf(t) tends to infinity ag” 1. The

the generalized relaxation model is applicable, e.g., in those
materials for which it is known, on the one hand, that the

reason for such physically meaningless behavior is that in therchlich relaxator model is applicable and, on the other, that

derivation of the relaxation equatidBa), (8b), we assumed non-exponential relaxation processes are observed in them. It
that self-similarity of the times when an interaction existsis possible that such processes take place in ferroelectrics,
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crystals with ionic conductivity, and also in liquid and plastic Therefore
crystals. l—evma 1—¢
2) The relaxation function of such systems is the solu- exp(—Qub™ ) Dexp QubD™)
tion of Eq. (8a), equivalently(8b), and has the forni12). “ QO a(a—¢)...(a—(n—1)e)
3) The parametew is the fractal dimension of the set = Z T+ 1) D™, (A5)
over which the times are statistically distributed at which the n=0
interaction between an elementary component of the physic&onsidered separately

system and the external field occurs. Q"a(a—e)...(a—(n—1)e)
APPENDIX A: I(n+1)
Before proving the operator relation about which we ~ (=1)"Q""[ a|/ « @
spoke in the main text, let us make two remarks. T T'(n+1) | & _§+1 —;+n—1
First, recall the well-known operator identity
A [AB] [[AB]B] (CDTEHN_ n<a> A6
exp(—B)A exp(B)= + ... T T(n+ DI (—ale) =(Qe) n (AB)

T T2 T3
Substituting Eq(A6) into Eq. (A5), we obtain

L.-1AB].. B] (A1) exp(—QuD'~?)D%exp QuD*~#)
I'(n+1)
The brackets here denote the commutator of its operator ar- =3 (Qa)n(a_/s) pene= > (Qs)n(‘)‘_/s)
gumentsA andB. n=0 n n=0 n

Second, we need to calculate the commutator

elale—n_ & ale
[D*,QuD'"?] X[DF]*F " =(D*+ )™,

% a O<e=sl, ase, (A7)
[D%,QuD ¢]=0Q nzo Dn[U](n)D“HH which was to be demonstrated.

_QuDa+lfs:QuDa+lfs

a—s__ atl—e_ a—¢e A. K. Jonsher Dielectric Relaxation in SolidéChelsea Dielectric Press,
+aQD* *~QuD =aQD*"®, London. 1983
(A2) °R. R. Nigmatullin, V. A. Goncharov, and Ya. E. Ryabdsxtended Ab-
stract of the XXVIIth Ampe CongressKazan(1994), p. 251.
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