
Cole–Davidson dielectric relaxation as a self-similar relaxation process

ms
R. R. Nigmatullin and Ya. E. Ryabov

Kazan’ State University, 420008 Kazan’, Russia
~Submitted February 7, 1996!
Fiz. Tverd. Tela~St. Petersburg! 39, 101–105~January 1997!

An effort has been undertaken to understand the nature of one type of non-exponential
relaxation, namely Cole–Davidson relaxation. Toward this end, a model of relaxation as a self-
similar process is proposed. An equation containing operators of fractional integration and
differentiation is obtained and solved, which the relaxation function obeys in this case. ©1997
American Institute of Physics.@S1063-7834~97!02001-7#
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Problems associated with relaxation in insulators
obeying an exponential law have a long history. At prese
in connection with significant extensions of the temporal a
frequency ranges of the measurements1 a significant amount
of experimental data has been accumulated confirming
existence of non-exponential relaxation processes, and
eral empirical expressions have been proposed to des
them. In most cases these expressions are written in the
quency domain.

From the theoretical point of view, these dependen
represent an attempt to understand the nature of these
cesses, on the conceptual basis of the temporal relaxa
distribution~TRD!, when the normalized macroscopic rela
ation function f (t) is represented as a sum of exponen
functions with the appropriate amplitudes and relaxat
times.

Such an approach to the description of non-exponen
relaxation is obviously based on the assumption that the
laxing macroscopic system consists of the appropriate n
ber of subsystems, each of which relaxes with its own rel
ation time. Without a doubt, this assumption may be va
for many systems, but it is equally true that such a partiti
ing into subsystems has a real physical meaning only w
the number of subsystems is finite and comparatively sm

As is well known,1 three expressions for the comple
susceptibility allow one to describe a wide range of expe
mental data. These are the Cole–Cole function

x~ iv!5
x0

11~ iv/vp!
«, ~1!

the Cole–Davidson function

x~ iv!5
x0

~11~ iv/vp!!n , ~2!

and the Gavril’yak–Negami function

x~ iv!5
x0

~11~ iv/vp!
«!n. ~3!

Herev is the frequency,vp is the frequency of the peak o
the dielectric losses, and« and n are parameters wher
0,« andn<1.

If, as is usually done, we apply the TRD concept
explain these functional forms, then it becomes necessa
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making up the macroscopic system is infinite since in t
case the TRD functions are continuous and do not have
row peaks1 which could be interpreted as a manifestation
separate subsystems. Therefore, in our opinion, the app
tion of the TRD concept for such systems is invalid. Besid
the TRD concept does not allow one to clarify the physi
nature of the parameters« andn entering into formulas~1!–
~3!, which is another indication of its incompleteness.

The present paper attempts to understand the pos
mechanism of the appearance of one of these types of re
ation, namely Cole–Davidson relaxation, with the help o
model of a self-similar relaxation process.

At present, an effort is already underway2 to understand
the nature of non-exponential relaxation, based on the
pothesis of a self-similar relaxation process, but it is
stricted to a consideration of processes describable in
frequency domain by the Cole–Cole expression.

The present paper attempts to answer the follow
questions.

1! What physical process can lead to the appearanc
non-exponential relaxation of Cole–Davidson type and
what substances can such a process by detected?

2! What is the explicit form of the equation for the no
malized macroscopic relaxation functionf (t) in this case?

3! What is the meaning of the parametern entering into
the Cole–Davidson expression?

1. EQUATION OF SELF-SIMILAR RELAXATION

Before embarking upon a consideration of the model
self-similar relaxation, let us make a few remarks.

First, we agree that we will consider those physical s
tems in which relaxation on the macroscopic level is defin
as relaxation of the elementary components of this system
the microlevel.

Second, following Fro¨hlich,3 we assume as a first ap
proximation that there is no indirect interaction at the m
crolevel between the elementary components of the phys
system. Relaxation proceeds as a result of the interactio
the separate elements of this system with a thermostat.

In other words, applied to dielectric relaxation th
means that the relaxation processes of individual electric
poles do not affect each other. In addition, we assume tha
elementary components of such a physical system find th
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scribing relaxation of the system on the macrolevel will c
incide with the equations describing relaxation of t
individual electric dipoles on the microlevel. Therefore,
our discussion of the model of self-similar relaxation, fro
here on, we will use the equation for the total dipole mom
of the insulator, bearing in mind that the motion of the ind
vidual elementary dipoles from which the insulator is co
posed in fact possess a self-similar character.

Let us consider the ordinary equation of exponential
laxation, which can be written in the form

exp~2V0t !
d

dt
exp~V0t ! f ~ t !50. ~4!

Heret is time, f (t) is the normalized macroscopic relaxatio
function of some physical quantity, andV0 is the relaxation
rate constant.

For the case of dielectric relaxationf (t)5P(t)/P(0),
whereP(t) is the total dipole moment of the insulator, an
V0 is a constant describing the interaction of the mac
scopic dipole with the thermostat.3 In particular, Eq.~4! de-
scribes the behavior of systems whose relaxation on the
crolevel can be described by the model of a deep poten
well with two equilibrium positions ~the Fröhlich
relaxator!.1,3–5 In this model the relaxation process begi
after a energy difference is created in the two equilibriu
positions with the help of an external field~see Fig. 1!. It is
well known that the model of the Fro¨hlich relaxator is valid
for a wide class of insulators, and works already exist wh
authors have tried to modify this model using models
hopping charge transport and ionic conductivity@see, e.g.,
Refs. 1 and 6~monographs!, Ref. 4 ~review!, and Ref. 7~a
paper!# to describe non-exponential relaxation. However,
the final tally all such efforts are based on the TRD conce
In the present work, therefore, we have modified the mo
of the Fröhlich relaxator, departing from other conside
ations.

Toward this end, consider the functio
G(t)5exp(V0t)f(t). If f (t) solves Eq.~4!, thenG(t)5 f (0)
is a constant and

d

dt
G~ t !50. ~5!

FIG. 1. Dependence of the potential energyU of a dielectric dipole on the
rotation angle w or the displacementr of the ion ~electron!. a,
b—equilibrium positions, a—in an external electric field.
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the equilibrium state. In other words, at these timesG(t) is
equal to zero and not tof (0) and instead of the non
equilibrium picture~see Fig. 1b! the system is found in the
equilibrium state~see Fig. 1a!. The reason for this may be
for example, thermal fluctuations of the local fields in t
insulator leading to screening of the external field.

In addition, suppose that the times whenG(t)5 f (0) are
distributed over a self-similar~fractal! set. The phrase ‘‘self-
similar objectS’’ means that the objectS is invariant with
respect to a scale transformationS(jt)5bS(t), where the
quantitiesj and b define the fractal dimension of this se
Thus, for example, the fractal Cantor set is invariant w
respect to the transformationS((1/3)t)52S(t) and its fractal
dimension is ln(2)/ln(3).

In other words, at times that coincide with the points
some self-similar set,G(t)5 f (0), and attimes that coincide
with the vacancies of this setG(t)50. Thus, integrating the
functionG(t) and averaging over the various realizations
the self-similar set, one obtains8

D21G~ t !5AD2n@ f ~0!#. ~6!

HereA is a constant determined by the structure of t
fractal set on whichG(t) is distributed,n is the dimension of
this set (0<n<1), andD2n is the Riemann–Liouville frac-
tional integration operator, defined9–11 as

D2n@ f ~ t !#5~1/G~n!!E
0

t

~ t2t!n21f ~t!dt,

whereG(n) is the gamma function.
Employing the properties of the fractional integratio

and differentiation operators, we can rewrite Eq.~6! in the
form

Dn@G~ t !#50. ~7!

Here Dn is the fractional differentiation operator
defined9–11 as

Dn@ f ~ t !#5~1/G~12n!!
d

dt E0
t

~ t2t!2n f ~t!dt.

In other words, if we are considering relaxation f
which the interaction with the external field is of a disco
tinuous self-similar nature, then Eq.~5! for the function
G(t) must be replaced by Eq.~7!.

Taking the nature ofG(t) into account, the equation fo
the relaxation functionf (t) can be written in the form

exp~2V0t !D
n@exp~V0t ! f ~ t !#50 ~8a!

or invoking the operator relation~see the Appendix!

exp~2VuD12«!Daexp~VuD12«!5~D«1V«!a/«,

0,«<1, a<«,

we can give it the more elegant form

~D11V0!
n@ f ~ t !#50. ~8b!

Here and below, expressions of the form exp(2VuD12«) and
(D«1V«)a« are understood in the customary sense as se
of fractional integration and differentiation operators.
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2. COMPLEX SUSCEPTIBILITY OF SYSTEMS DESCRIBED
BY THE GENERALIZED RELAXATION EQUATION
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As usual, to find the complex susceptibilityx( iv) of a
system obeying the equation of self-similar relaxation,
consider the response of this system to a harmonic pertu
tion Bexp(ivt). We seek the solution in the form
f (t)5x( iv)exp(ivt). Then, substituting in Eq.~8b!, we ob-
tain

~D11V0!
n@x~ iv!exp~ ivt !#5B exp~ ivt !. ~9!

Taking into account the exceedingly precise nature of
operator (D11V0)

n and assuming that the perturbatio
Bexp(ivt) is switched on adiabatically at the timet→ 2 `,
we arrive at the following expression for the complex su
ceptibility:

x~ iv!5
x0

~11~ iv/V0!!n . ~10!

To obtain this result, we made use of the fact that, for
case in which the interaction in Eqs.~8! is switched on adia-
batically, the fractional derivativesDn must be replaced by
the alternative formD2`

n We also made use of the result

D2`
n @exp~ t !#5~ iv!nexp~ ivt !,

where

D2`
n @ f ~ t !#5~1/G~12n!!

d

dt E2`

t

~ t2t!2n f ~t!dt.

It is easy to see that expression~10! coincides with em-
pirical equation~2! describing Cole–Davidson relaxation
the frequency domain.

3. SOLUTION OF THE GENERALIZED RELAXATION
EQUATION

The solution of Eq.~8b!, equivalently Eq.~8a!, can be
obtained with the help of the Laplace transform.

Indeed, if we define the Laplace transformF(p) of the
function f (t) as

F~p!5E
0

`

f ~ t !exp~2pt!dt,

then, applying the Laplace transform to Eq.~8a! and invok-
ing the properties of this transformation,12 we obtain the fol-
lowing expression for the Laplace transform off (t):

F~p!5
C

~p1V0!
n. ~11!

HereC is a constant determined by the initial conditions.

f ~ t !5C
r n21

G~n!
exp~2V0t !. ~12!

This function is the solution of the equation describing se
similar relaxation

As t→0, the functionf (t) tends to infinity astn21. The
reason for such physically meaningless behavior is that in
derivation of the relaxation equation~8a!, ~8b!, we assumed
that self-similarity of the times when an interaction exis
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the entire time interval from zero to infinity. However, i
real physical systems there always exist a lower and an u
bound on self-similarity, defined, for example, by the fr
quency 1/t of the interaction of the relaxing system with th
‘‘thermostat’’ and the time of formula~12!. Self-similarity is
possible, therefore, only at times greater than the low
bound~t.t!.

As is clear from the above, it is not necessary to use
TRD concept, mentioned at the beginning of this paper
describe non-exponential relaxation. We propose as an a
native the concept of self-similar relaxation. The main d
ference between this process and the usual relaxation pro
is that here the interaction with the external field causing
relaxation is of a discontinuous nature and that the tim
when this interaction exists are distributed over some s
similar ~fractal! set.

We may take the modified Fro¨hlich relaxator as a pos
sible physical model of such a process, in which the sys
relaxes only at times that coincide with the points of so
fractal set and at these times the dependence of the pote
energy of the interactionU of an individual electric dipole
on the rotation anglew has the form shown in Fig. 1a,b an
at other times, as a result of screening of the external field
the local fields inside the insulator, the dependence ofU on
w has the form shown in Fig. 1a. Note that this version of
dynamical Fro¨hlich relaxator is applicable not only when th
variation of the total dipole moment of the insulator is due
rotations of the elementary dipoles, but also when the po
tial energyU depends on the displacementr of the ions of
the crystal lattice1,5 ~see Fig. 1!.

It is possible that such processes can be observe
ferroelectrics, for which the deep-potential-well model wi
two equilibrium positions is known to be applicable1 and that
experimental data exist confirming the presence in them
non-exponential relaxation processes.1,6,7 It is also possible
that such processes play a role in relaxation in liquid a
plastic crystals.

It should be noted that when we averaged Eq.~5! over
time by the method suggested in Ref. 8 we assumed tha
fractal set over which the average was taken is a statis
fractal. In other words, the property of self-similarity
manifested in such an object only for its mean characte
tics. Such are all actually existing fractal structures: the
rimeters of coastlines, the shape of clouds, broken surfa
etc. ~see, e.g., Ref. 13!.

Then the variation in time of the physical quantityf is
described by Eq.~8a!, equivalently~8b!, whose solution is
the functionf (t), given by Eq.~12!.

Thus, we can give the following answers to the questio
formulated at the beginning of this article.

1! The complex susceptibility described by the empiric
Cole–Davidson relation can be observed in systems to wh
the generalized relaxation model is applicable, e.g., in th
materials for which it is known, on the one hand, that t
Fröhlich relaxator model is applicable and, on the other, t
non-exponential relaxation processes are observed in the
is possible that such processes take place in ferroelect
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crystals with ionic conductivity, and also in liquid and plastic
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crystals.
2! The relaxation function of such systems is the so

tion of Eq. ~8a!, equivalently~8b!, and has the form~12!.
3! The parametern is the fractal dimension of the se

over which the times are statistically distributed at which
interaction between an elementary component of the phys
system and the external field occurs.

APPENDIX A:

Before proving the operator relation about which w
spoke in the main text, let us make two remarks.

First, recall the well-known operator identity

exp~2B̂!Â exp~B̂!5
Â

G~1!
1

@Â,B̂#

G~2!
1

@@Â,B̂#,B̂#

G~3!
1•••

1
@ ...@Â,B̂#,...B̂#

G~n11!
1••• . ~A1!

The brackets here denote the commutator of its operato
gumentsÂ and B̂.

Second, we need to calculate the commuta
@Da,VuD12«#

@Da,VuD12«#5V (
n50

`

Dn@u#S anDDa112«2n

2VuDa112«5VuDa112«

1aVDa2«2VuDa112«5aVDa2«.

~A2!

Here (n
a) are the binomial coefficients. In the calculation

this commutator and in what follows we assume th
0,«<1 anda<«.

Let us now consider the expressio
exp(2VuD12«)Daexp(VuD12«). According to Eq.~A1!

exp~2VuD12«!Daexp~VuD12«!5
Da

G~1!

1
@Da,VuD12«#

G~2!
1

@@Da,VuD12«#,VuD12«#

G~3!

1... . ~A3!

Employing Eq.~A2!, we easily obtain

@@Da,VuD12«#,VuD12«#5V2a~a2«!Da22«. ~A4!
90 Phys. Solid State 39 (1), January 1997
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exp~2VuD12«!Daexp~VuD12«!

5 (
n50

`
Vna~a2«!...~a2~n21!«!

G~n11!
Da2n«. ~A5!

Considered separately

Vna~a2«!...~a2~n21!«!

G~n11!

5
~21!nVn«n

G~n11! S 2
a

« D S 2
a

«
11D S 2

a

«
1n21D

5
~21!nVn«nG~2 a

«1n!

G~n11!G~2a/«!
5~V«!nS a

n D ~A6!

Substituting Eq.~A6! into Eq. ~A5!, we obtain

exp~2VuD12«!Daexp~VuD12«!

5 (
n50

`

~V«!nS a/«

n DDa2n«5 (
n50

`

~V«!nS a/«

n D
3@D«#a/«2n5~D«1V!a/e,

0,«<1, a<«, ~A7!

which was to be demonstrated.

1A. K. Jonsher,Dielectric Relaxation in Solids~Chelsea Dielectric Press
London, 1983!.

2R. R. Nigmatullin, V. A. Goncharov, and Ya. E. Ryabov,Extended Ab-
stract of the XXVIIth Ampe`re Congress, Kazan~1994!, p. 251.
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