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Abstract

An image analysis, visualization, and segmentation sys-
tem has been developed to assist researchers participating
in a world-wide imaging study led by the National Institute
on Aging to determine risk factors contributing to chronic
osteoarthritis. The system provides a sophisticated but sim-
ple to use interface that directs the segmentation of muscle,
fat, and other tissues of interest in thigh and abdomen com-
puted tomography images.

1. Introduction

This paper describes a system to assist researchers and
clinicians in segmentation and quantification tasks for the
analysis of computed tomography (CT) images. This paper
focuses on tools developed for use as a plug-in to the Medi-
cal Image Processing, Analysis, and Visualization (MIPAV)
software program developed at the National Institutes of
Health [5].

The developed system assists researchers participating in
a National Institute on Aging led world-wide imaging study
to determine risk factors contributing to chronic osteoarthri-
tis. Accurate automated systems are required to assist re-
searchers in evaluating the loss of muscle mass over a period
of time [3]. Currently available manual systems do not pro-
vide the required analysis capabilities for conducting longi-
tudinal studies relating to changes in body composition for
a large cohort.

Body fat distribution measurement using CT images has
previously led to significant observations in the study of
osteoarthritis, obesity, and aging. Relative loss of muscle
mass may become more important than measurements of
body mass index (BMI) in determining health risks of obe-
sity [11]. An increase of fat inside of muscle tissue is seen
with an increase in age [10] [2], even though no signifi-
cant change in BMI measurement occurs [1]. This research
could use automated systems to allow larger data sets for
quantifiable imaging studies. The system developed here

provides an expandable interface to generate repeatable re-
sults and make larger longitudinal studies attainable.

As a computer-based medical system, successful imple-
mentation of this tool rests on an integrated understanding
of its performance capabilities. A detailed description of
the functionality presented in this paper, including the auto-
mated segmentation methods that have been derived from
previous research and customized for the required tasks,
are discussed. Customized semi-automatic tools, previously
developed, are then reviewed.

Classification and quantification methods, including a
brief overview of the user interface, are presented to aid un-
derstanding of this tool’s role in the research framework.
Finally, a comparative analysis of the automatic segmenta-
tion steps is presented along with ideas for future research
directions.

2. Methods

The system automatically segments many of the de-
sired tissues and provides advanced image processing
tools to accurately and robustly assist technicians in semi-
automatically determining the composition of the remain-
ing, difficult to automatically segment muscles. Automatic
segmentation techniques used in CT image analysis have
been shown [12] to be useful tools for the applications pre-
sented herein. Although research into methods for auto-
matic and semi-automatic methods have been well covered
over the past fifteen years, few comprehensive systems exist
to provide these methods directly to researchers interested
in employing them in mass studies such as the osteoarthritis
initiative.

The following sections describe the integrated methods
that were developed by capitalizing on previous work in
automatic computed tomography segmentation. These sec-
tions make use of the terms right, left, top, and bottom from
the perspective of the observer to describe the work with-
out regard to a particular orientation. The developed system
is able to take an image’s given orientation to develop seg-
mented regions of interest which are labeled in a way that



appears anatomically correct to the research scientist.

2.1. Automatic Segmentation - Thigh

Past research has affirmed the intuition that image inten-
sity plots of the lines in Figure 1 suggest that thresholding
approaches to automatically segment the thigh, bone, and
marrow are relatively straight forward [7]. Simple cases of
the segmentation of the thighs, separated by air, are seg-
mented using the following process. Equations 1 and 2 de-
scribe the segmentation process for the left thigh. The cen-
ter of mass (cm) for the thresholded thigh cl is determined
by first separating the thresholded image I∗ into left and
right components I∗l and I∗r . This is done by finding an x∗

near the center of the image where the points within a verti-
cal line through I∗ have intensity values of zero Hounsfield
units. All points on either side of this line can then be
grouped as part of either sub-image I∗l or I∗r .

I∗ = threshold(750, 2000, I) (1)

∃x∗ ∀y s.t. I∗(x∗, y) = 0
I∗l = I∗(x, y) ∀x < x∗, cl = cm(I∗l )

(2)

With a center of mass from the thresholded image for
each thigh we can perform the region growing (rg) covered
in previous research. The parameter cl derived in equation
2 is used as an initial seed point for this process. The seed
point cl or cr is perturbed by δob and δib to be guaranteed
outside the bone. δob describes the top and left coordinates
of the intersection of the outer-bone boundary with a ver-
tical and horizontal line from cl. δib describes the bottom
and right coordinates of this same intersection. Values be-
tween -300 and 900 Hounsfield units within the value of the
marrow, val(cl), in the original image I are included for rg.

rg

 cl,x + δob,x − δib,x
cl,y + δob,y − δib,y

z

 , val(cl),−300, 900

 (3)

The process for segmenting connected thighs is consid-
erably more difficult. Although previous research does ad-
dress this topic from a generalized topology perspective, the
following method proved to be advantageous. Let (δol, δor)
be a segment along the contour defined by the top portion
of the thighs such that ∂xδol = ∂xδor = 0. Let r be points
along this segment of the contour.

∀r ∈ (δol, δor) ∃{r∗} s.t. ∂x ({r∗})� ∂x(r) (4)

∀r ∈ {r∗} ∃rt s.t. |rt,y| > |ry| (5)

This process searches through the set of steep points r∗

along the contour to find the minimum connecting point
of the thighs rt. This point has been found along the top

Figure 1. Connected thigh example.

portion of the thighs by finding the greatest absolute y-
coordinate within the set r∗. The same process can be used
to find the maximum connecting point along the contour de-
fined by the bottom portion of the thighs.

The bone and marrow automatic segmentations prove to
be fairly straightforward using previously developed thresh-
old approaches [9]. Finally, quality control methods exist to
avoid the creation of regions that are not useful approxi-
mations. Results for these automatic methods demonstrate
that the system we have developed is useful for segmenting
these images on a large scale. Quantitative results can be
seen in section 4 Analysis.

Automatic segmentation of the requested muscle bundles
proved infeasible. Partial voluming problems and other is-
sues discussed in [7] demonstrate the difficulty of automatic
muscle segmentation at a resolution finer than obtaining the
overall muscle bundle. Semi-automatic methods exist for
the segmentation of these muscles. Prior to a description of
these methods, a summary of the automatic abdomen seg-
mentation methods follows.

2.2. Automatic Segmentation - Abdomen

Automatic segmentation of the abdomen and subcuta-
neous fat in computed tomography images are described
next. Image intensity profiles, of a given abdomen, sug-
gest that region growing methods used in the automatic cre-
ation of thigh regions must be modified for segmentation of
the subcutaneous area [12]. Methods for whole abdomen
segmentation using region growing, thresholding, and er-
ror correction through iterative erosion/dilation proved to
work well for most of the cases evaluated. Calcifications
and voxel partial volume averaging make thigh segmenta-
tion a more complex problem.

For automatic abdomen segmentation, a seed point r∗ is
selected from the thresholded set r’ that is as close to the
origin as possible.

The seed point is guaranteed to be fat due to CT cali-
bration. To remove possible partial voluming and bound-



ary noise errors near the skin boundary the seed point is
perturbed a number of pixels δsub based on the nearest
occurrence of muscle. A region growing (rg) process is
performed using intensity values between -75 and 1500
Hounsfield units of the seed point’s intensity.

rg

 r∗ + δsub,x
r∗ + δsub,y

z

 , val(r∗ + δsub),−75, 1500

 (6)

A morphological closing operation is performed to fill
in gaps left by air pockets. These dilations and erosions
are performed for up to ten iterations until only one object
is identified within the abdomen area. A is the set of ab-
domen pixels/voxels, while B is the background image. As
shown in Equation 7, the dilations and erosions occur using
A and the complement of B to generate the automatically
segmented abdomen area.

⋂
β∈Bc

 ⋃
β∈Bc

(A+ β)− β

 (7)

The subcutaneous area is automatically segmented us-
ing a revised algorithm of the one presented in [12]. This
method works for both 2D and 3D images after prompting
from the user.

Points referred to in this description may be seen on Fig-
ure 2. From the center of mass of a particular abdomen,
radial trajectories are traversed in one degree increments
to determine the location of the subcutaneous area. A par-
ticular trajectory first encounters multiple points of type C
and B as it searches for the previously segmented abdomen.
Once a trajectory encounters point A, point B is determined
by traversing over possibly fat area until a muscle has been
encountered. Each band is completed independently be-
fore deformable models and smoothing operations are per-
formed. More information on deformable models can be
found in the next section on semi-automatic methods.

Figure 2. Subcutaneous fat segmentation.

Figure 3. Clockwise from top-left; livewire ex-
ample, level-set example, and region growing
example images.

The segmentation of the abdominal muscles required
for this study suffer from the same partial voluming prob-
lem preventing them from being automatically analyzed.
The desired abdominal muscles include the psoas, lateral
obliques, paraspinous, and rectus. The segmentation of the
visceral cavity and calcium deposits located within the aorta
are also required. This tool provides many semi-automatic
methods, including Livewire [6], for segmenting the re-
quired muscles.

2.3. Semi-Automatic Segmentation

Livewire and level set methods are widely used tools
for semi-automatic segmentation. The cost function of the
livewire method is used to minimize the path traveled as a
guide to a particular segmentation. When user-driven, this
method draws two dimensional ROIs (Regions of Interest)
initialized by a point defined by the cursor.

The static threshold option of region growing as used in
this application is described by equations 8 and 9, given the
image I, seed point r∗, and intensity constraints of max and
min.

∀r ∈ I δ < ||r∗ − r||∞ ε < ||r∗ − r||2 (8)

∀r′ ∈ Vε,δ(r) s.t. min ≤ val(r′) ≤ max (9)

The resulting set of r’ is then the solution set of the re-
gion growing operation. This method is susceptible to un-
usual filling around the border of a desired object, as shown
in the far right image in Figure 3. Such results are corrected
using fuzzy connectedness methods [9].

3D CT images can be segmented on a single slice and
then propagated to other slices using the software’s cus-
tom propagation buttons. These buttons attempt to evolve
a given VOI by the approximate derivatives given by a b-
spline approximation to the contour.

Each of these semi-automatic methods are complimen-
tary to the automated methods discussed and have also been



shown to be essential in segmenting the muscles from com-
puted tomography images within the more general frame-
work.

3. Classification and Quantification

The segmentation tool’s user interface is an extension of
the main MIPAV interface. All of the tools available in MI-
PAV can be used in this system, and in some cases have been
customized. Filters, morphological operations, VOI identi-
fiers, look up table operations, and painting/VOI creation
methods that aid in the eventual classification and quantifi-
cation of tissue are available through the MIPAV interface.

The design and implementation of classification and
quantification methods in this system supports custom op-
erations as required. The user interface can be changed
through a graphical custom segmentation builder to sup-
port a larger variety of computed tomography datasets than
the ones presented here. This custom interface can then be
saved to a locally defined preferences file. Previously cre-
ated VOIs are automatically loaded into the custom inter-
face. By allowing the researcher to select which muscles
or other parts of the body should be considered within this
tool, the custom interface allows the tool to be used for user-
defined classification and quantification tasks.

3.1. Tissue Classification

Threshold classification of CT images allows identifica-
tion of muscle and fat tissue within the thigh and abdomen.
Partial voluming effects are decreased by adopting a schema
found in recent literature [7].

-190 ≤ fat pixel ≤ -30
0 ≤ muscle pixel ≤ 100
-30 < partial volume pixel < 0
This classification system can be assigned to a lookup

table (LUT). Applying the given LUT to a CT abdomen im-
age yields the result shown in Figure 4.

The partial voluming effects are denoted by white pix-
els in this figure. These pixels fall in the range of -30 to 0
Hounsfield units. Such pixels are counted as part of a partic-
ular muscle’s total tissue area/volume when they fall under
a given VOI. However, such pixels are not counted as part of
a given VOIs total muscle or intramuscular fat area/volume.
Implications of this counting method are discussed in the
results section.

3.2. Muscle and Fat Quantification

Muscle and interstitial fat are identified using the tissue
intensity values previously discussed. Pixels are then cat-
egorized by the VOI that contains them and aggregated to
yield reports such as the one in Figure 5.

Figure 4. Custom look up table applied to a
partially segmented abdomen.

This segmentation tool calculates the total fat, lean, and
aggregate area in any particular VOI and also computes the
mean Hounsfield unit for each of these sets. In cases where
multiple curves exist (such as liver cysts) the total area is
the compilation of all created curves.

The PDF report seen in Figure 5 is automatically cre-
ated using the open source and freely available program
iText [4]. The MIPAV statistics generator has also been
customized for this tool to produce total fat, lean, and aggre-
gate areas for each VOI (Volume of Interest) in addition to
the statistics already available, such as the center of mass,
eccentricity, and major or minor axis length. The output
generated from these tools can be imported into an analysis
program for further evaluation.

3.3. Customization

Derivations of the presented classification and quantifi-
cation tasks are possible through an interface designed to
allow this system to be used for other research projects that
involve computed tomography images. The abdomen and
thigh tools presented here generate local preference files in a
modifiable format. This allows researchers to specify mus-
cles or other tissues of interest to a particular project.

Interface modifications can be made either manually or
within the system, generating a new set of saved preferences
that can be selected later. These modifications are presented
to the researcher as custom created objects that are present
in all parts of the research framework. Intestinal obstruc-
tions, unusual calcifications, or specific muscle bundles are
examples of objects that can be added through this interface.
These objects can then be included in relevant calculations
and displayed appropriately. Items of interest that are added
in this way can be included in the automatically generated
PDF report such as the one shown in Figure 5.



Sample UCSD MIPAV % Diff
5937 173.760 174.2 0.25
5942 180.363 180.4 0.02
6331 173.782 173.3 -0.28
6332 190.564 190.8 0.12
6336 242.377 242.5 0.05
6338 191.921 194.3 1.24
6385 220.804 220.9 0.04
6464 170.393 170.7 0.18
6516 148.458 148.6 0.10
6518 235.119 236.6 0.63
6577 153.155 153.2 0.03
6593 259.180 259.1 -0.03
6597 182.600 182.5 -0.05

Average % Difference 0.18
Standard Deviation 0.38

Table 1. Left thigh measurement comparison.
All measurements in cm2.

Researcher defined tissues of interest can also affect the
calculations of other objects. For example, a researcher
may not want to include identified calcifications in the
quantification of muscle mass. These calcifications can
be assigned a location within the developed system and
assigned a flag that indicates calculations should be per-
formed. The relevant calcification calculations will then be
removed from a given muscle’s values for area, volume, and
mean Hounsfield units. No customization was made for the
analysis presented in the next section.

4. Analysis

Preliminary results from this tool were compared to a
segmented dataset from the University of California, San
Diego (UCSD). The UCSD data were composed of 13 thigh
and 13 abdomen CT scans that were later segmented using
our tool. The freehand segmentations were generated and
processed using a program developed at UCSD. This pro-
gram computed the areas, subject to the same partial volum-
ing errors encountered within the MIPAV based tool, and
then printed the areas in a PDF report.

4.1. Thigh Results

All 13 of the two dimensional thigh CT scans processed
by our tool yielded successful automatic segmentations of
the thigh, bone and marrow for both the left and right thigh.
Our generated area of the thigh was then directly compared
to the UCSD’s manually segmented data values for the thigh
after subtracting area values for the bone and marrow.

Sample UCSD MIPAV % Diff
5937 177.047 177.3 0.14
5942 178.775 179.3 0.29
6331 173.036 173.6 0.33
6332 188.736 189.3 0.30
6336 253.816 253.8 -0.01
6338 204.483 208.0 1.72
6385 229.073 229.7 0.27
6464 178.967 179.3 0.19
6516 150.194 150.6 0.27
6518 241.165 239.0 -0.90
6577 157.35 157.6 0.16
6593 253.172 253.0 -0.07
6597 195.246 196.0 0.39

Average % Difference 0.24
Standard Deviation 0.55

Table 2. Right thigh measurement compari-
son. All measurements in cm2.

As can be seen in tables 1 and 2, the UCSD and our seg-
mentations had an average percent difference of .18 percent
in the left thigh and .24 percent in the right thigh. Com-
pared to the average percentage difference, the compara-
tively large standard deviation suggests two important facts.
First, a larger sample of previously segmented data should
be used before useful generalizations can be made about the
effectiveness of the automatic segmentations. Second, it re-
minds one that in any computer-based medical system, a
manual inspection of automatically generated data, VOIs in
this case, is needed before the data is used to draw any sig-
nificant conclusions. Still the small average percent differ-
ence between the UCSD and MIPAV produced areas sug-
gests that this tool presents a useful innovation when en-
countering a project where the manual demands of segment-
ing an image would be too laborious and subjective.

4.2. Abdomen Results

The same comparison of 13 datasets from UCSD was
used to compare automatic segmentation of the abdomen
and subcutaneous fat with the previous manual segmen-
tation. In this case a higher standard deviation, though
still low average percent difference of 1.12 percent was en-
countered from automatic segmentation of the abdomen as
shown in Table 3. The standard deviation suggests that on
average, our tool is overextending the definition of abdomen
tissue to phantoms that may exist in the image. As with seg-
mentation of the thigh, the average percent difference may
still be small enough that this tool would be a useful asset
in a large scale project such as the osteoarthritis initiative at
the National Institute on Aging.



Sample UCSD MIPAV % Diff
5937 384.366 391.7 1.91
5942 564.618 580.3 2.78
6331 145.039 133.9 -7.68
6332 411.284 424.2 3.14
6336 419.321 429.9 2.52
6338 340.017 343.9 1.14
6385 454.456 468.9 3.18
6464 411.451 425.2 3.34
6516 331.362 337.1 1.73
6518 418.129 427.4 2.22
6577 309.173 306.9 -0.74
6593 488.844 489.2 0.07
6597 384.320 388.1 0.98

Average % Difference 1.12
Standard Deviation 2.92

Table 3. Abdomen measurement comparison.
All measurements in cm2.

Automatic segmentation of the subcutaneous area en-
countered similar problems to those from attempting to seg-
ment the fascia border in the thigh case. This suggests semi-
automatic segmentation tools are useful in optimizing the
results of the subcutaneous segmentation. Without such an
optimization the average percent difference of the subcu-
taneous fat area and mean Hounsfield unit from the auto-
matic segmentation are presented in Table 4. The average
percent difference of the Hounsfield unit is only about half
as large as the average percent difference for the subcuta-
neous fat. These percentages present either an area of fur-
ther refinement for our tool or the need for manual inspec-
tion of the automatically generated VOIs to ensure the in-
tegrity of results. The segmentation of subcutaneous fat in
these abdominal images is a further step in the evolution of
the method originally proposed in [12].

5. Conclusion

The software package described in this paper provides
robust and novel methods for segmentation and analysis of
computed tomography thigh and abdomen images in both
two and three dimensions. By leveraging MIPAV’s existing
utilities with custom operations, a tool has been developed
which proves advantageous to existing software methods
for faster, reliable, and repeatable segmentation and anal-
ysis of CT images.

Further development into automatic and semi-automatic
segmentation methods to enhance the algorithms developed
for a greater complexity of images is necessary. The soft-
ware provides a useful framework for testing new image

% Diff Std Dev
Abdomen Fat 2.34 1.92
Subcutaneous Fat 3.06 3.58
Subcutaneous Fat HU 1.57 1.50

Table 4. Resulting percentage differences
for the subcutaneous fat, accompanying
Hounsfield unit, and total abdomen fat.

processing algorithms and functionality.
Analysis of the developed automatic segmentations can

also be further improved. Comparisons made here to the
manually segmented UCSD data set indicate that this seg-
mentation program generates adequate results when com-
pared to a segmentation program that has previously been
used for active research. Further analysis would compare
the segmentation efforts of this program to accessible clin-
ical measurements to determine the general reliability and
accuracy of this program.

Testing is critical to ensure the reliability of the automat-
ically generated results. The testing presented in this paper
indicates that our system provides invariant, accurate results
across a spectrum of computed tomography images. The
segmentation process using this system is faster than exist-
ing manual segmentation systems. This system provides ro-
bust segmentation and calculation abilities that with further
work will make large scale studies such as the world-wide
osteoarthritis initiative feasible.
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